Skip to main content

On the Role of Topology in Focus+Context Visualization

  • Conference paper
Topology-based Methods in Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

In this paper three types of visualization scenarios are discussed, where topology improves the readability of particular visualization results. The first type combines topology information represented by simple graphical primitives with other forms of visual representations. The second type uses the topology information to define the relevance of objects within the data. The relevance is reflected in the visualization by applying the cut-away concept. The third type of visualizations is based on the change of topology of the underlying data to increase visibility of the most interesting information. Every type handles topology in a different way. This illustrates various roles of topology in scientific visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. Flexible direct multivolume rendering in interactive scenes. In Proceedings of Vision, Modeling, and Visualization’04, pages 379-386, 2004.

    Google Scholar 

  2. H. Hauser. Scientific Visualization: The Visual Extraction of Knowledge from Data, chapter Generalizing Focus+Context Visualization, pages 305-327. Springer-Verlag, 2005.

    Google Scholar 

  3. J. Hladůvka. Derivatives and Eigensystems for Volume-Data Analysis and Visualization. PhD thesis, Vienna University of Technology, Austria, 2001.

    Google Scholar 

  4. H. Löffelmann. Visualizing Local Properties and Characteristic Structures of Dynamical Systems. PhD thesis, Vienna University of Technology, Austria, 1998.

    Google Scholar 

  5. Y. Sato, C. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S. Yoshida, and R. Kikinis. Tissue classification based on 3d local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 6 (2):160-180, 2000.

    Article  Google Scholar 

  6. H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields. In Proceedings of IEEE Visualization 2003, pages 225-232, 2003.

    Google Scholar 

  7. H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Topological methods for 2d time-dependent vector fields based on stream lines and path lines. IEEE Transactions on Visualization and Computer Graphics, 11(4):383-394, 2005.

    Article  Google Scholar 

  8. X. Tricoche, C. Garth, G. Kindlmann, E. Deines, G. Scheuermann, M. Ruetten, and C. Hansen. Visualization of intricate flow structures for vortex breakdown analysis. In Proceedings of IEEE Visualization 2004, pages 187-194, 2004.

    Google Scholar 

  9. J. J. van Wijk. Spot noise: Texture synthesis for data visualization. Computer Graphics, 25(4):319-318, 1991.

    Article  Google Scholar 

  10. A. Vilanova. Visualization Techniques for Virtual Endoscopy. PhD thesis, Vienna University of Technology, Austria, 2001.

    Google Scholar 

  11. I. Viola. Importance-Driven Expressive Visualization. PhD thesis, Vienna University of Technology, Austria, 2005.

    Google Scholar 

  12. I. Viola, A. Kanitsar, and M. E. Gröller. Importance-driven feature enhancement in volume visualization. IEEE Transactions on Visualization and Computer Graphics, 11(4):408-418, 2005.

    Article  Google Scholar 

  13. T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Topological construction and visualization of higher order 3D vector fields. In Proceedings of Eurographics 2004, pages 469-478, 2004.

    Google Scholar 

  14. X. Zheng and A. Pang. Topological lines in 3D tensor fields. In Proceedings of IEEE Visualization 2004, pages 313-320, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Viola, I., Gröller, E. (2007). On the Role of Topology in Focus+Context Visualization. In: Hauser, H., Hagen, H., Theisel, H. (eds) Topology-based Methods in Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70823-0_12

Download citation

Publish with us

Policies and ethics