Skip to main content

A Practical Approach to Two-Dimensional Scalar Topology

  • Conference paper

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

Computing and analyzing the topology of scalar fields has proven to be a powerful tool in a wide variety of applications. In recent years the field has evolved from computing contour trees of two-dimensional functions to Reeb graphs of general two-manifolds, analyzing the topology of time-dependent volumes, and finally to creating Morse-Smale complexes of two and three dimensional functions. However, apart from theoretical advances practical applications depend on the development of robust and easy to implement algorithms. The progression from initial to practical algorithms is evident, for example, in the contour tree computation where the latest algorithms consist of no more than a couple of dozens lines of pseudo-code. In this paper we describe a similarly simple approach to compute progressive Morse-Smale complexes of functions over two-manifolds. We discuss compact and transparent data-structures used to compute and store Morse-Smale complexes and demonstrate how they can be used to implement interactive topology based simplification. In particular, we show how special cases arising, for example, from manifolds with boundaries or highly quantized functions are handled effectively. Overall the new algorithm is easier to implement and more efficient both run-time and storage wise than previous approaches by avoiding to refine a given triangulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. L. Bajaj, V. Pascucci, and D. R. Schikore. Visualization of scalar topology for structural enhancement. In D. Ebert, H. Hagen, H. Rushmeier, , editors, Proc. IEEE Visualization ’98, pages 51-58, Los Alamitos California, 1998. IEEE, IEEE Computer Society Press.

    Google Scholar 

  2. C. L. Bajaj and D. R. Schikore. Topology preserving data simplification with error bounds. Computers and Graphics, 22(1):3-12, 1998.

    Article  Google Scholar 

  3. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for functions on triangulated surfaces. IEEE Trans. on Visualization and Computer Graphics, 10(4):385-396, 2004.

    Article  Google Scholar 

  4. H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible isosurfaces using local geometric measures. In IEEE Visualization ’04, pages 497-504. IEEE Computer Society, 2004.

    Google Scholar 

  5. A. Cayley. On contour and slope lines. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, XVIII:264-268, 1859.

    Google Scholar 

  6. A.W. Cook, W. Cabot, and P.L. Miller. The mixing transition in RayleighTaylor instability. J. Fluid Mech., 511:333-362, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Spectral surface quadrangulation. ACM Trans. on Graphics (TOG) / Proc.of ACM SIGGRAPH, 25(3):1057-1066, 2006.

    Article  Google Scholar 

  8. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale complexes for piecewise linear 3-manifolds. In Proc. 19th Sympos. Comput. Geom., pages 361-370, 2003.

    Google Scholar 

  9. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom., 30:87-107, 2003.

    MATH  MathSciNet  Google Scholar 

  10. M. Goresky and R. MacPherson. Stratified Morse Theory. Springer-Verlag, Heidelberg, Germany, 1988.

    MATH  Google Scholar 

  11. A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann. Topology-based simplification for feature extraction from 3D scalar fields. In Proceedings of the IEEE Visualization 2005 (VIS’05), pages 535-542. IEEE Computer Society, 2005.

    Google Scholar 

  12. R. M. Haralick and L. G. Shapiro. Image segmentation techniques. CVGIP, 29(1):100-132, January 1985.

    Google Scholar 

  13. J. L. Helman and L. Hesselink. Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 11(3):36-46, May/Jun. 1991.

    Article  Google Scholar 

  14. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully automatic similarity estimation of 3D shapes. In E. Fiume, editor, Proceedings of ACM SIGGRAPH 2001, pages 203-212, New York, NY, USA, 2001. ACM.

    Google Scholar 

  15. H. Hoppe. Progressive meshes. Computer Graphics (Proc. SIGGRAPH ’96), 30(4):99-108, Aug. 1996.

    Google Scholar 

  16. Y. Matsumoto. An Introduction to Morse Theory. American Mathematical Society, 2002.

    Google Scholar 

  17. J. C. Maxwell. On hills and dales. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, XL:421-427, 1870.

    Google Scholar 

  18. J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.

    MATH  Google Scholar 

  19. L. R. Nackman. Two-dimensional critical point configuration graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(4):442-450, July 1984.

    Article  MATH  Google Scholar 

  20. J. Pfaltz. Surface networks. Geographical Analysis, 8:77-93, 1976.

    Google Scholar 

  21. J. Pfaltz. A graph grammar that describes the set of two-dimensional surface networks. Graph-Grammars and Their Application to Computer Science and Biology (Lecture Notes in Computer Science, no. 73, 1979.

    Google Scholar 

  22. Y. Shinagawa, T. Kunii, and Y. L. Kergosien. Surface coding based on Morse theory. IEEE Computer Graphics and Applications, 11:66-78, 1991.

    Article  Google Scholar 

  23. S. Takahashi, T. Ikeda, Y. Shinigawa, T. L. Kunii, and M. Ueda. Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data. In Proc. Eurographics ’95, pages C-181-C-192, Sep. 1995.

    Google Scholar 

  24. S. Takahashi, Y. Shinagawa, and T. L. Kunii. A feature-based approach for smooth surfaces. In Proc. of the Fourth Symp on Solid Modeling and Applications, SMA ’97, pages 97-110. ACM, May 1997.

    Google Scholar 

  25. M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. Schikore. Contour trees and small seed sets for isosurface traversal. In Symposium on Computational Geometry, pages 212-220, 1997.

    Google Scholar 

  26. W. Warntz. The topology of a socio-economic terrain and spatial flows. Regional Scientific Associations, 17:47-61, 1966.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bremer, PT., Pascucci, V. (2007). A Practical Approach to Two-Dimensional Scalar Topology. In: Hauser, H., Hagen, H., Theisel, H. (eds) Topology-based Methods in Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70823-0_11

Download citation

Publish with us

Policies and ethics