Skip to main content

Calculating Blast Loads for Civil Engineering Structures

  • Chapter
100 Volumes of ‘Notes on Numerical Fluid Mechanics’

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 100))

Summary

A brief overview of the state of the art of computing blast loads on civil engineering structures is given. The general problem setting, requirements, main physical phenomena and timescales, as well as suitable numerical methods are described. Several examples show the power of blast loads calculations for civil engineering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum, J.D., Luo, H., Löhner, R.: Numerical Simulation of a Blast Inside a Boeing 747, AIAA-93-3091 (1993)

    Google Scholar 

  2. Baum, J.D., Luo, H., Löhner, R.: Numerical Simulation of Blast in the World Trade Center, IAA-95-0085 (1995)

    Google Scholar 

  3. Baum, J.D., Luo, H., Löhner, R.: The Numerical Simulation of Strongly Unsteady Flows With Hundreds of Moving Bodies, AIAA-98-0788 (1998)

    Google Scholar 

  4. Baum, J.D., Mestreau, E., Luo, H., Löhner, R., Pelessone, D., Charman, C.: Modeling Structural Response to Blast Loading Using a Coupled CFD/CSD Methodology. In: Proc. Des. An. Prot. Struct. Impact/ Impulsive/ Shock Loads (DAPSIL), Tokyo, Japan (December 2003)

    Google Scholar 

  5. Baum, J.D., Mestreau, E., Luo, H., Löhner, R., Pelessone, D., Giltrud, M.E., Gran, J.K.: Modeling of Near-Field Blast Wave Evolution, AIAA-06-0191 (2006)

    Google Scholar 

  6. Billey, V., Périaux, J., Perrier, P., Stoufflet, B.: 2-D and 3-D Euler Computations with Finite Element Methods in Aerodynamic. In: Proc. Int. Conf. on Hypersonic Problems, Saint-Etienne, January 13-17 (1986)

    Google Scholar 

  7. Colella, P., Woodward, P.: The Piecewise-Parabolic Method for Hydrodynamics. J. Comp. Phys. 54, 174 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colella, P.: Multidimensional Upwind Methods for Hyperbolic Conservation Laws, LBL-17023 (preprint, 1983)

    Google Scholar 

  9. International Detonation Symposium, Penta-Annual (1951-2010)

    Google Scholar 

  10. Fryxell, B., Menon, S.: Large-Eddy Simulation of Richtmeyer-Meshkov Instability, AIAA-05-0314 (2005)

    Google Scholar 

  11. Godunov, S.K.: Finite Difference Method for Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics. Mat. Sb. 47, 271–306 (1959)

    MathSciNet  Google Scholar 

  12. Hirsch, C.: Numerical Computation of Internal and External Flow. J. Wiley & Sons, Chichester (1991)

    Google Scholar 

  13. Jameson, A., Schmidt, W., Turkel, E.: Numerical Solution of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes, AIAA-81-1259 (1981)

    Google Scholar 

  14. Jameson, A.: Analysis and Design of Numerical Schemes for Gas Dynamics I: Artificial Diffusion, Upwind Biasing, Limiters and Their Effect on Accuracy and Multigrid Convergence. Int. J. CFD 4, 171–218 (1995)

    Google Scholar 

  15. Jiang, Z., Takayama, K., Skews, B.W.: Numerical Study on Blast Flowfields Induced by Supersonic Projectiles Discharged From Shock Tubes. Phys. Fluids 10(1), 277–288 (1998)

    Article  Google Scholar 

  16. Kim, K., Wilson, W., Kreitinger, T., Smith, B., Benningfield, L.V., Rocco, J., Orphal, J., Needham, C., Ortley, D.J., Chawla, M.: Numerical Simulation of Standardized Thermobarics Tests in a Two-Room Structure. In: Proc. MABS-19, Calgary, AL, Canada (2006)

    Google Scholar 

  17. Klomfass, A., Heilig, G., Schwarz, U.: Validation of Coupled Fluid-Structure Simulation Against Experiments in the Large Blast Simulator LBS 501. In: Proc. MABS-19, Calgary, AL, Canada (2006)

    Google Scholar 

  18. Kuzmin, D., Turek, S.: Flux Correction Tools for Finite Elements. J. Comp. Phys. 175, 525–558 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuzmin, D., Möller, M., Turek, S.: Multidimensional FEM-FCT Schemes for Arbitrary Time-Stepping. Int. J. Num. Meth. Fluids 42, 265–295 (2003)

    Article  MATH  Google Scholar 

  20. Kuzmin, D., Löhner, R., Turek, S. (eds.): Flux- Corrected Transport. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  21. van Leer, B.: Towards the Ultimate Conservative Scheme. II. Monotonicity and Conservation Combined in a Second Order Scheme. J. Comp. Phys. 14, 361–370 (1974)

    Article  Google Scholar 

  22. Liu, C., Jiang, L., Visbal, M., Xie, P.: Smart Weighted Compact Scheme for Shock Tube and Shock-Entropy Interaction, AIAA-06-3708 (2006)

    Google Scholar 

  23. Löhner, R., Morgan, R.K., Peraire, J., Vahdati, M.: Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes Equations. Int. J. Num. Meth. Fluids 7, 1093–1109 (1987)

    Article  MATH  Google Scholar 

  24. Löhner, R., Morgan, R.K., Vahdati, M., Boris, J.P., Book, D.L.: FEM-FCT: Combining Unstructured Grids with High Resolution. Comm. Appl. Num. Meth. 4, 717–730 (1988)

    Article  MATH  Google Scholar 

  25. Löhner, R., Baum, J.D.: Adaptive H-Refinement on 3-D Unstructured Grids for Transient Problems. Int. J. Num. Meth. Fluids 14, 1407–1419 (1992)

    Article  MATH  Google Scholar 

  26. Löhner, R., Yang, C., Cebral, J., Baum, J.D., Luo, H., Pelessone, D., Charman, C.: Fluid-Structure Interaction Using a Loose Coupling Algorithm and Adaptive Unstructured Grids, AIAA-95-2259 (invited, 1995)

    Google Scholar 

  27. Löhner, R.: Applied CFD Techniques. J. Wiley & Sons, Chichester (2001)

    Google Scholar 

  28. Löhner, R., Cebral, J., Yang, C., Baum, J.D., Mestreau, E., Charman, C., Pelessone, D.: Large-Scale Fluid-Structure Interaction Simulations. In: Computing in Science and Engineering (CiSE), May/June 2004, pp. 27–37 (2004)

    Google Scholar 

  29. Löhner, R., Luo, H., Baum, J.D., Rice, D.: Improvements in Speed for Explicit, Transient Compressible Flow Solvers, AIAA-08-0610 (2008)

    Google Scholar 

  30. Luo, H., Baum, J.D., Löhner, R.: Edge-Based Finite Element Scheme for the Euler Equations. AIAA J. 32(6), 1183–1190 (1994)

    Article  MATH  Google Scholar 

  31. Luo, H., Baum, J.D., Löhner, R.: Extension of Harten-Lax-van Leer Scheme for Flows at All Speeds. AIAA J. 43(6), 1160–1166 (2005)

    Article  Google Scholar 

  32. International Symposium on Military Applications of Blast Simulation, Bi-Annual Series (1967-2007)

    Google Scholar 

  33. Mader, C.: Numerical Modeling of Explosives and Propellants, 2nd edn. CRC Press, Boca Raton (1998)

    Google Scholar 

  34. Massoni, J., Saurel, R., Lefranois, A., Baudin, G.: Modeling Spherical Explosions with Aluminized Energetic Materials. Shock Waves 16, 1 (2006)

    Article  Google Scholar 

  35. Mavriplis, D.: Three-Dimensional Unstructured Multigrid for the Euler Equations, AIAA-91-1549-CP (1991)

    Google Scholar 

  36. Mestreau, E., Löhner, R., Aita, S.: TGV Tunnel-Entry Simulations Using a Finite Element Code with Automatic Remeshing, AIAA-93-0890 (1993)

    Google Scholar 

  37. National Research Council - Protecting Buildings from Boomb Damage. National Academy Press (1995)

    Google Scholar 

  38. Osher, S., Solomon, F.: Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws. Math. Comp. 38, 339–374 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Peraire, J., Peiro, J., Morgan, K.: A Three-Dimensional Finite Element Multigrid Solver for the Euler Equations, AIAA-92-0449 (1992)

    Google Scholar 

  40. Remennikov, A.M., Rose, T.A.: Modelling Blast Loads on Buildings in Complex City Geometries. Comp. & Struct. 83(27), 2197–2205 (2005)

    Article  Google Scholar 

  41. Roe, P.L.: Approximate Riemann Solvers, Parameter Vectors and Difference Schemes. J. Comp. Phys. 43, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rose, T.A.: Air3D User Guide. 7.0: RMCS. Cranfield University, UK (2003)

    Google Scholar 

  43. Shock and Vibration Symposium, Annual (1950-2007)

    Google Scholar 

  44. International Symposium on Shock Waves, Bi-Annual (1960-2007)

    Google Scholar 

  45. Sod, G.: A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws. J. Comp. Phys. 27, 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sweby, P.K.: High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM J. Num. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Timofeev, E., Voinovich, P., Takayama, K.: Adaptive Unstructured Simulation of Three Dimensional Blast Waves with Ground Surface Effect, AIAA-98-0544 (1998)

    Google Scholar 

  48. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  49. Weatherill, N.P., Hassan, O., Marchant, M.J., Marcum, D.L.: Adaptive Inviscid Flow Solutions for Aerospace Geometries on Efficiently Generated Unstructured Tetrahedral Meshes, AIAA-93-3390 (1993)

    Google Scholar 

  50. Whitaker, D.L., Grossman, B., Löhner, R.: Two-Dimensional Euler Computations on a Triangular Mesh Using an Upwind, Finite-Volume Scheme, AIAA-89-0365 (1989)

    Google Scholar 

  51. Zalesak, S.T.: Fully Multidimensional Flux-Corrected Transport Algorithm for Fluids. J. Comp. Phys. 31, 335–362 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löhner, R., Baum, J.D. (2009). Calculating Blast Loads for Civil Engineering Structures. In: Hirschel, E.H., Krause, E. (eds) 100 Volumes of ‘Notes on Numerical Fluid Mechanics’. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70805-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70805-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70804-9

  • Online ISBN: 978-3-540-70805-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics