Advertisement

A Dissipation Inequality for the Minimum Phase Property of Nonlinear Control Systems

  • Christian Ebenbauer
  • Frank Allgöwer
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 353)

Abstract

The minimum phase property is an important notion in systems and control theory. In this paper, a characterization of the minimum phase property of nonlinear control systems in terms of a dissipation inequality is derived. It is shown that this dissipation inequality is equivalent to the classical definition of the minimum phase property in the sense of Byrnes and Isidori, if the control system is affine in the input and the so-called input-output normal form exists.

Keywords

Minimum Phase Property Dissipation Inequalities Nonlinear Control Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguiar A P, Hespanha J P, Kokotović P V (2005) Path-following for non-minimum phase systems removes performance limitations, IEEE Transactions on Automatic Control, 50:234–239CrossRefGoogle Scholar
  2. 2.
    Åström K J (2000) Limitations on control system performance, European Journal of Control, 6:2–20MathSciNetGoogle Scholar
  3. 3.
    Aulbach B (2004) Gewöhnliche Differenzialgleichungen, Elsevier Spektrum Akademischer Verlag, 2nd editionGoogle Scholar
  4. 4.
    Bode H W (1940) Relations between attenuation and phase in feedback amplifier design, Bell System Technical Journal, 19:421–454Google Scholar
  5. 5.
    Ebenbauer C, Allgöwer F (2004) Minimum-phase property of nonlinear systems in terms of a dissipation inequality, In: Proceedings of the American Control Conference (ACC), Boston, USA, pages 1737–1742Google Scholar
  6. 6.
    Ebenbauer C, Allgöwer F (2005) Stability analysis of constrained control systems: an alternative approach, Systems and Control Letters, Accepted for publicationGoogle Scholar
  7. 7.
    Ebenbauer C, Allgöwer F (2006) A dissipation inequality for the minimum phase property of nonlinear control systems and performance limitations, Submitted for publicationGoogle Scholar
  8. 8.
    Engel S (1988) Optimale lineare Regelung: Grenzen der erreichbaren Regelgüte in linearen zeitinvarianten Regelkreisen, Band 18, Fachbereiche Messen-Steuern-RegelnGoogle Scholar
  9. 9.
    Freudenberg J S, Looze D P (1985) Right half plane poles and zeros and design tradeoffs in feedback systems, IEEE Transactions on Automatic Control, 30:555–565zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Griepentrog E (1992) Index reduction methods for differential-algebraic equations, In: Proceedings of the Berliner Seminar on Differential-Algebraic Equations Seminar Notes, Mathematik-92-1, ISSN: 0863-0976Google Scholar
  11. 11.
    Henrion D, Garulli A (2004) Positive Polynomials in Control, Springer Lecture Notes in Control and Information Sciences, Springer VerlagGoogle Scholar
  12. 12.
    Isidori A (1994) Nonlinear Control Systems, Springer Verlag, 3rd editionGoogle Scholar
  13. 13.
    Khalil H K (2002) Nonlinear Systems, Prentice Hall, 3rd editionGoogle Scholar
  14. 14.
    Kokotović P V, Arcak M (2001) Constructive nonlinear control: A historical perspective, Automatica, 37:637–662Google Scholar
  15. 15.
    Kwakernaak H, Sivan R (1972) Linear Optimal Control Systems, John Wiley and SonsGoogle Scholar
  16. 16.
    Liberzon D, Morse S, Sontag E D (2002) Output-input stability and minimum-phase nonlinear systems, IEEE Transactions on Automatic Control, 34:422–436CrossRefMathSciNetGoogle Scholar
  17. 17.
    Massera J L (1956) Contributions to stability theory, Annals of Mathematics, 64:182–206CrossRefMathSciNetGoogle Scholar
  18. 18.
    Middleton R H (1991) Trade-offs in linear control system design, Automatica, 27:281–292zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nešić D, Skafidas E, Mareels I M Y, Evans R J (1999) Minimum phase properties for input non-affine nonlinear systems, IEEE Transactions on Automatic Control, 44:868–872CrossRefGoogle Scholar
  20. 20.
    Newton G C, Gould L A, Kaiser J F (1957) Analytical Design of Linear Feedback Controls, John Wiley and SonsGoogle Scholar
  21. 21.
    Parrilo P A, Lall S (2003) Semidefinite programming relaxations and algebraic optimization in control, European Journal of Control, 9(2–3)Google Scholar
  22. 22.
    Petrovski I G (1966) Ordinary Differential Equations, Prentice HallGoogle Scholar
  23. 23.
    Qiu L, Davidson E J (1993) Performance limitations of nonminimum phase systems in the servomechanism problem, Automatica, 29:337–349zbMATHCrossRefGoogle Scholar
  24. 24.
    Seron M M, Braslavsky J H, Kokotović P V, Mayne D Q (1999) Feedback limitations in nonlinear systems: from Bode integrals to cheap control, IEEE Transactions on Automatic Control, 44:829–833zbMATHCrossRefGoogle Scholar
  25. 25.
    Sontag E D (1998) Mathematical Control Theory, Springer VerlagGoogle Scholar
  26. 26.
    Su W, Qui L, Chen J (2003) Fundamental performance limitations in tracking sinusoidal signals, IEEE Transactions on Automatic Control, 48:1371–1380CrossRefGoogle Scholar
  27. 27.
    Svaricek F (2006) Nulldynamik linearer und nichtlinearer Systeme: Definitionen, Eigenschaften und Anwendungen, Automatisierungstechnik, 54(7):310–322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christian Ebenbauer
    • 1
  • Frank Allgöwer
    • 2
  1. 1.Laboratory for Information and Decision SystemsMassachusetts Institute of TechnologyUSA
  2. 2.Institute for Systems Theory and Automatic ControlUniversity of StuttgartGermany

Personalised recommendations