Human-Robot Interaction Control Using Force and Vision

  • Agostino De Santis
  • Vincenzo Lippiello
  • Bruno Siciliano
  • Luigi Villani
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 353)


The extension of application domains of robotics from factories to human environments leads to implementing proper strategies for close interaction between people and robots. In order to avoid dangerous collision, force and vision based control can be used, while tracking human motion during such interaction.


Physical Human-Robot Interaction Interaction Control Impedance Control Visual Control Extended Kalman Filter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Santis A, Siciliano B, Villani L (2006) The Atlas of Physical Human-Robot Interaction, Final Report of the EURON Perspective Research Project PHRIDOMGoogle Scholar
  2. 2.
    Zinn M, Khatib O, Roth B, Salisbury J K (2004) Playing it safe [human-friendly robot], IEEE Robotics and Automation Magazine, 11(2):12–21CrossRefGoogle Scholar
  3. 3.
    Bicchi A, Tonietti G (2004) Fast and “soft-arm” tactics, IEEE Robotics and Automation Magazine 11(2):22–33CrossRefGoogle Scholar
  4. 4.
    Hashimoto H (2005) Intelligent interactive spaces — integration of IT and robotics, In: Proceedings of 2005 IEEE Workshop on Advanced Robotics and its Social Impacts, 85–90Google Scholar
  5. 5.
    Hosoda K, Igarashi K, Asada M (1998) Adaptive hybrid control for visual and force servoing in an unknownenvironment, IEEE Robotics and Automation Magazine 5(4):39–43CrossRefGoogle Scholar
  6. 6.
    Nelson BJ, Morrow JD, Khosla PK (1995) Improved force control through visual servoing, In: Proceedings of 1995 American Control Conference, 380–386Google Scholar
  7. 7.
    Baeten J, De Schutter J (2004) Integrated Visual Servoing and Force Control. The Task Frame Approach, Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. 8.
    Morel G, Malis E, Boudet S (1998) Impedance based combination of visual and force control, In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, 1743–1748Google Scholar
  9. 9.
    Olsson T, Johansson R, Robertsson A (2004) Flexible force-vision control for surface following using multiple cameras, In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and System, 798–803Google Scholar
  10. 10.
    Hirzinger G, Albu-Schaeffer A, Hahnle M, Schaefer I, Sporer N (2001) On a new generation of torque controlled light-weight robots, In: Proceedings of 2001 IEEE International Conference of Robotics and Automation, 3356–3363Google Scholar
  11. 11. Scholar
  12. 12.
    De Luca A (2000) Feedforward/feedback laws for the control of flexible robots, In: Proceedings of 2000 IEEE International Conference on Robotics and Automation, 233–240Google Scholar
  13. 13.
    De Luca A, Lucibello P (1998) A general algorithm for dynamic feedback linearization of robots with elastic joint, In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, 504–510Google Scholar
  14. 14.
    Siciliano B, Villani L (1999) Robot Force Control, Kluwer, Dordrecht Boston LondonzbMATHGoogle Scholar
  15. 15.
    De Santis A, Albu-Schaeffer A, Ott C, Siciliano B, Hirzinger G (2007), The skeleton algorithm for real-time collision avoidance of a humanoid manipulator interacting with humans, Submitted to IEEE Transactions on RoboticsGoogle Scholar
  16. 16.
    De Santis A, Pierro P, Siciliano B (2006) The virtual end-effectors approach for human-robot interaction, In: Lenarčič J, Roth B (eds) Advances in Robot Kinematics, Springer, Berlin Heidelberg New York, 133–144CrossRefGoogle Scholar
  17. 17.
    Lippiello V, Siciliano B, Villani L (2006) 3D pose estimation for robotic applications based on a multi-camera hybrid visual system, In: Proceedings of 2006 IEEE International Conference on Robotics and Automation, 2732–2737Google Scholar
  18. 18.
    Espiau B, Chaumette F, Rives P (1992) A new approach to visual servoing in robotics, IEEE Transactions on Robotics and Automation, 8:313–326CrossRefGoogle Scholar
  19. 19.
    Lippiello V, Villani L (2003) Managing redundant visual measurements for accurate pose tracking, Robotica, 21:511–519CrossRefGoogle Scholar
  20. 20.
    Wilson W J, Hulls C C W, Bell G S (1996) Relative end-effector control using Cartesian position based visual servoing, IEEE Transactions on Robotics and Automation, 12:684–696CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Agostino De Santis
    • 1
  • Vincenzo Lippiello
    • 1
  • Bruno Siciliano
    • 1
  • Luigi Villani
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Napoli Federico IIItaly

Personalised recommendations