Skip to main content

Observability and the Design of Fault Tolerant Estimation Using Structural Analysis

  • Chapter
Advances in Control Theory and Applications

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 353))

Abstract

This chapter presents a structural analysis approach for the design of fault tolerant estimation algorithms. The general fault tolerance problem setting is first given, and structural analysis is presented in the component based modeling frame. An original condition for structural observability is developed, which is constructive, since it allows to identify those Data Flow Diagrams by which unknown variables can be estimated, both in healthy and in faulty conditions. The link with two basic dependability concepts, namely critical faults and reliability is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2003) Diagnosis and Fault Tolerant Control, Springer-Verlag, Berlin-Heidelberg, Germany

    MATH  Google Scholar 

  2. Carpentier T, Litwak R, Cassar J-Ph (1997) Criteria for the evaluation of FDI systems, Application to sensors location, In: Proceedings of IFAC Safeprocess’97, 1083–1088

    Google Scholar 

  3. Commault C, Dion J M, Sename O, Motyeian R (2000) Observer-based fault detection and isolation of structured systems, In: Proceedings of 39th IEEE Conference on Decision and Control, Sydney, Australia

    Google Scholar 

  4. Declerck P, Staroswiecki M (1991) Characterization of the Canonical Components of a Structural Graph for Fault Detection in Large Scale Industrial Plants, European Control Conference, Grenoble, France

    Google Scholar 

  5. Dion J M, Commault C, van der Woude J (2003) Generic properties and control of linear structured systems: a survey, Automatica, (39)7:1125–1144

    Article  Google Scholar 

  6. Diop S (2002) From the Geometry to the Algebra of Nonlinear Observability, In: Contemporary Trends in Nonlinear Geometric Control Theory and its Applications, editors Anzaldo-Meneses A, Monroy-PĂ©rez F, Bonnard B, Gauthier J P, World Scientific Publishing, Singapore

    Google Scholar 

  7. Dulmage A L, Mendelsohn N S (1958) Covering of bi-partite graphs, Canadian Journal of Mathematics, 10:517–534

    MATH  MathSciNet  Google Scholar 

  8. Dulmage A L, Mendelsohn N S (1959) A structure theory of bi-partite graphs of finite exterior dimension, Transaction of the Royal Society of Canada, Section III, 53:1–13

    Google Scholar 

  9. Gane C, Sarson T (1978) Structured Systems Analysis: Tools and Techniques, Englewood Cliffs, Prentice-Hall

    Google Scholar 

  10. Gauthier J P, Kupka I A K (2001) Deterministic Observation Theory and Applications, Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  11. Gehin A L, Staroswiecki M (1999) A Formal Approach to Reconfigurability Analysis, Application to the three Tank Benchmark, European Control Conference’ 99, Karlsruhe, Germany

    Google Scholar 

  12. Golver K, Silverman L M (1976) Characterization of structural controllability, IEEE Transaction on Automatic Control, 4: 534–537

    Article  Google Scholar 

  13. Harary F (1962) A graph theoretic approach to matrix inversion by partitioning, Numerische Mathematik, 4:128–135

    Article  MATH  MathSciNet  Google Scholar 

  14. Isermann R (2006) Fault-Diagnosis Systems, Springer, Berlin, Germany

    Google Scholar 

  15. Jiang J Zhang Y M (2006) Accepting performance degradation in fault-tolerant control system design, IEEE Transaction on Control Systems Technology, 14(2):284–292

    Article  Google Scholar 

  16. Lin C T (1974) Structural Controllability, IEEE Transaction on Automatic Control, 3:201–208

    Article  Google Scholar 

  17. Lin C T (1977) System structure and minimal structure controllability, IEEE Transaction on Automatic Control, 5:855–862

    Article  Google Scholar 

  18. Liu X, Liu J, Eker J, Lee E A (2003) Heterogeneous Modeling and Design of Control Systems, Software-Enabled Control: Information Technology for Dynamical Systems, editors Tariq Samad and Gary Balas, Wiley-IEEE Press

    Google Scholar 

  19. Mahmoud M, Jiang J, Zhang Y M (2003) Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis, LNCIS-287, Springer, Berlin, Germany

    MATH  Google Scholar 

  20. Meyer M, Le Lann J M, Koehret B, Enjalbert M (1994) Optimal selection of sensor location on a complex plant using a graph oriented approach, Computers and Chemical Engineering, 18:S535–S540

    Article  Google Scholar 

  21. Murota K (1987) Systems analysis by graphs and matroĂŻds. Structural solvability and controllability, Springer Verlag

    Google Scholar 

  22. Reinschke K J (1988) Multivariable control: a graph theoretic approach, Springer-Verlag

    Google Scholar 

  23. Schizas C, Evans F J (1981) A graph theoretic approach to multivariables control system design, Automatica, 17-2:371–377

    Article  Google Scholar 

  24. Staroswiecki M, Cassar J P, Declerck P (2000) A structural framework for the design of FDI in large scale industrial plants, Issues of Fault Diagnosis for Dynamic Systems, editors Patton R, Frank P, Clark R, Springer Verlag, 2000

    Google Scholar 

  25. Staroswiecki M (2003) On Fault Tolerant Estimation in Sensor Networks, In: Proceedings of European Control Conference, Cambridge, UK

    Google Scholar 

  26. Staroswiecki M, Hoblos G, Aitouche A (2004) Sensor Network Design for Fault Tolerant Estimation, International Journal of Adaptive Control and Signal Processing, 18: 55–72

    Article  MATH  Google Scholar 

  27. Staroswiecki M (2004) Progressive accommodation of actuator faults in the linear quadratic control problem, In: Proceedings of 43rd IEEE Conference on Decision and Control, Paradise Island, The Bahamas, pages 5234–5241

    Google Scholar 

  28. Steward D V (1962) On an approach to techniques for the analysis of the structure of large systems of equations, SIAM Review, 4: 321–342

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhang Y M, Jiang J (2003) Bibliographical review on reconfigurable fault-tolerant control systems, In: Proceedings of IFAC Symposium on SAFEPROCESS’03, pages 265–276, Washington, D.C., USA

    Google Scholar 

  30. Zhang X, Parisini T and Polycarpou M M, (2004), Adaptive Fault-Tolerant Control of Nonlinear Uncertain Systems: An Information-based Diagnostic Approach, IEEE Transaction on Automatic Control, 49(8): 1259–1274

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Staroswiecki, M. (2007). Observability and the Design of Fault Tolerant Estimation Using Structural Analysis. In: Bonivento, C., Marconi, L., Rossi, C., Isidori, A. (eds) Advances in Control Theory and Applications. Lecture Notes in Control and Information Sciences, vol 353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70701-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70701-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70700-4

  • Online ISBN: 978-3-540-70701-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics