Controller Design Through Random Sampling: An Example

  • Maria Prandini
  • Marco C. Campi
  • Simone Garatti
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 353)


In this chapter, we present the scenario approach, an innovative technology for solving convex optimization problems with an infinite number of constraints. This technology relies on random sampling of constraints, and provides a powerful means for solving a variety of design problems in systems and control. Specifically, the virtues of this approach are here illustrated by focusing on optimal control design in presence of input saturation constraints.


Constrained Control Noise Rejection Convex Optimization Scenario Optimization Randomized Methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goodwin G. C., Seron M. M., De Doná J. A. (2005) Constrained Control and Estimation: an Optimisation Approach, Springer-Verlag, New York.zbMATHGoogle Scholar
  2. 2.
    Boyd S., El Ghaoui L., Feron E., Balakrishnan V. (1994) Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Philadelphia.Google Scholar
  3. 3.
    Ben-Tal A., Nemirovski A. (1998) Robust convex optimization, Mathematical Operational Research, 23(4):769–805.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Blondel V. D., Tsitsiklis J. N. (2000) A survey of computational complexity results in systems and control, Automatica, 36: 1249–1274.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Braatz R. P., Young P. M., Doyle J. C., Morari M. (1994) Computational complexity of μ calculation, IEEE Transactions on Automatic Control, 39(5):1000–1002.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Nemirovski A. (1993) Several NP-hard problems arising in robust stability analysis, SIAM Journal on Matrix Analysis and Application, 6:99–105.Google Scholar
  7. 7.
    Calafiore G., Campi M. C. (2005) Uncertain convex programs: randomized solutions and confidence levels, Mathematical Programming, Ser. A 102:25–46.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Calafiore G., Campi M. C. (2006) The scenario approach to robust control design, IEEE Transactions on Automatic Control 51(5):742–753.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Morari M., Zafiriou E. (1989) Robust process control, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  10. 10.
    Wahlberg B. (1991) System identification using Laguerre models, IEEE Transactions on Automatic Control, 36:551–562.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Wahlberg B., Hannan E. (1993) Parameteric signal modelling using Laguerre filters, The Annals of Applied Probabililty, 3:467–496.zbMATHMathSciNetGoogle Scholar
  12. 12.
    Calafiore G., Campi M. C. (2003) Robust convex programs: randomized solutions and application in control, In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii.Google Scholar
  13. 13.
    Calafiore G., Campi M. C. (2004) A new bound on the generalization rate of sampled convex programs, In: Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas.Google Scholar
  14. 14.
    Calafiore G., Campi M. C. (2003) A learning theory approach to the construction of predictor models, Discrete and Continuous Dynamical Systems, supplement volume:156–166.Google Scholar
  15. 15.
    Calafiore G., Campi M. C., Garatti S. (2005) Identification of reliable predictor models for unknown systems: a data-consistency approach based on learning theory, In: Proceedings of the 16th IFAC World Congress, Prague, Czech Republic.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Maria Prandini
    • 1
  • Marco C. Campi
    • 2
  • Simone Garatti
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItalia
  2. 2.Dipartimento di Elettronica per l’AutomazioneUniversità di BresciaBresciaItalia

Personalised recommendations