Skip to main content

Modeling and Control of Autonomous Helicopters

  • Chapter
Advances in Control Theory and Applications

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 353))

Abstract

This chapter presents an overview on the modeling and model-based control of autonomous helicopters. Firstly it introduces some of the platforms and control architectures that has been developed in the last 15 years. Later, the Chapter considers the modeling of the helicopter and the identification techniques. Then, it overviews different linear and non-linear model-based control approaches. This section also includes experiments on the control of the helicopter vertical motion that illustrate the presented techniques and point out the interest of nonlinear analysis methods to study the dynamic behavior of the helicopter. Finally, the Chapter presents open research lines coming from two challenging applications: the autonomous landing in oscillating platforms and the lifting and transporting of a single load with several helicopters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrientos A, Del Cerro J, Campoy P, García P J (2002) An autonomous helicopter guided by computer vision for inspection of overhead power cables, In: Workshop on Aerial Robotics-IEEE / RSJ International Conference on Intelliget Robots and Systems IROS 2002

    Google Scholar 

  2. Bejar M, Cuesta F, Ollero A (2007) On the use of soft computing techniques for helicopter control in environment protection mission scenarios, To appear in Intelligent Automation and Soft Computing

    Google Scholar 

  3. Bejar M, Isidori A, Marconi L, Naldi R (2005) Robust vertical/lateral/longitudinal control of an helicopter with constant yaw-attitude In: Proceedings of the IEEE Conference on Decision and Control

    Google Scholar 

  4. Buskey G, Wyeth G, Roberts J (2001) Autonomous helicopter hover using an artificial neural network, In: Proceedings of the IEEE International Conference on Robotics and Automation, pages 1635–1640

    Google Scholar 

  5. Cavalcante C, Cardoso J, Ramos J G, Nerves O R (1995) Design and tuning of a helicopter fuzzy controller, In: Proceedings of IEEE International Conference on Fuzzy Systems, volume 3, pages 1549–1554

    Google Scholar 

  6. Deeg C, Musial M, Hommel G (2004) Control and simulation of an autonomously flying model helicopter, In: IFAC Symposium on Intelligent Autonomous Vehicles

    Google Scholar 

  7. Deeg C (2006) Modeling simulation, and implementation of an autonomous flying robot, PhD thesis, Technische Universität Berlin

    Google Scholar 

  8. Doherty P, Granlund G, Kuchcinski K, Sandewall E, Nordberg K, Skarman E, Wiklund J (2000) The witas unmanned aerial vehicle project, In: Proceedings of the 14th European Conference on Artificial Intelligence, pages 747–755

    Google Scholar 

  9. Eck C, Chapuis J, Geering H P (2001) Software-supported design and evaluation of low-cost navigation units, In: Proceedings of the 8th Saint Peterburg International Conference on Integrated Navigation Systems, pages 163–172

    Google Scholar 

  10. Fagg A H, Lewis M A, Montgomery J F, Bekey G A (1993) The usc autonomous flying vehicle: an experiment in real-time behaviour-based control, In: Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1173–1180

    Google Scholar 

  11. Fantoni I, Lozano R (2002) Non-linear Control for Underactuated Mechanical Systems, Chapter 13: Helicopter on a platform

    Google Scholar 

  12. Gavrilets V, Frazzoli E, Mettler B, Piedmonte M, Feron E (2001) Aggressive maneuvering of small autonomous helicopters: A human-centered approach, The International Journal of Robotics Research, 20(10):795–807

    Article  Google Scholar 

  13. González A, Mahtani R, Béjar M, Ollero A (2004) Control and stability analysis of an autonomous helicopter, In: Proceedings of World Automation Congress

    Google Scholar 

  14. Huang S, Jing Y, Yang G, Zhang S (1997) The decentralized fixed modes of twin lift systems, In: Proceedings of the American Control Conference, pages 2388–2389

    Google Scholar 

  15. Isidori A, Marconi L, Serrani A (2001) Robust nonlinear motion control of a helicopter, In: Proceedings of the 40th IEEE Conference on Decision and Control, pages 4586–4591

    Google Scholar 

  16. Isidori A, Marconi L, Serrani A (2003) Robust nonlinear motion control of a helicopter, IEEE Transactions on Automatic Control, 48(3):413–426

    Article  MathSciNet  Google Scholar 

  17. Johnson E N, Kannan S K (2002) Adaptive flight control for an autonomous unmanned helicopter, AIAA Guidance, Navigation and Control Conference, (AIAA-2002–4439)

    Google Scholar 

  18. Kadmiry B, Bergsten P, Driankov D (2001) Autonomous helicopter using fuzzy-gain scheduling, In: Proceedings of the IEEE Conference on Robotic and Automation ICRA, volume 3, pages 2980–2985

    Google Scholar 

  19. Kim H J, Shim D H (2003) A flight control system for aerial robots: algorithms and experiments, Control Engineering Practice, 11(12):1351–1515

    Article  Google Scholar 

  20. Kim S K, Tilbury D M (2004) Mathematical modelling and experimental identification of a model helicopter, Journal of Robotic Systems, 21(3):95–116

    Article  Google Scholar 

  21. Koo T J, Hoffman F, Shim H, Sinopoli B, Sastry S (1998) Hybrid control of model helicopters, In: Proceedings of the IFAC Workshop on Motion Control, pages 285–290

    Google Scholar 

  22. Koo T J, Sastry S (1998) Output tracking control design of a helicopter model based on approximate linearization, In: Proceedings of the 37th IEEE Conference on Decision and Control, pages 3635–3640

    Google Scholar 

  23. La Civita M, Papageorgiou G, Messner W C, Kanade T (2002) Design and flight testing of a high-bandwidth \( \mathcal{H}\infty \) loop shaping controller for a robotic helicopter, In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, number AIAA-2002-4836, Montery, CA

    Google Scholar 

  24. La Civita M, Papageorgiou G, Messner W C, Kanade T (2006) Design and flight testing of a high-bandwidth \( \mathcal{H}\infty \) loop shaping controller for a robotic helicopter, Journal of Guidance, Control, and Dynamics, 29(2):485–494

    Google Scholar 

  25. Gordon Leishman J (2000) Principles of Helicopter Aerodynamics, Cambridge University Press

    Google Scholar 

  26. Maharaj D Y (1994) The application of non-linear control theory to robust behaviour-based control, PhD thesis, Dept of Aeronautics, Imperial College of Science, Technology and Medicine

    Google Scholar 

  27. The MathWorks, Inc. (2004) Matlab Optimization Toolbox User’s Guide, revised for version 3.0 (release 14), fifth printing edition

    Google Scholar 

  28. Mettler M, Tischler M B, Kanade T (2001) System identification modelling of a small-scale unmanned rotorcraft for flight control design, American Helicopter Society Journal

    Google Scholar 

  29. Montgomery J F, Bekey G A (1998) Learning helicopter control through “teaching by showing”, In: Proceedings of the 37th IEEE Conference on Decision and Control

    Google Scholar 

  30. Montgomery J F, Fagg A H, Bekey G A (1995) The usc afv-i: A behaviour based entry, 1994 Aerial Robotics Competition, IEEE Expert, 10(2):16–22

    Article  Google Scholar 

  31. Oh S, Pathak K, Agrawal S K, Pota H R, Garratt M (2006) Approaches for a tetherguided landing of an autonomous helicopter, IEEE Transactions on Robotics, 22(3):536–544

    Article  Google Scholar 

  32. Raimundez J C, Camaño J L, Béjar M (2006) Application of adaptive neural-network control to a scale 6dof helicopter In: Proceedings of Artificial Intelligence and Cognitive Science

    Google Scholar 

  33. Remuss V, Musial M, Hommel G (2002) Marvin, an autonomous flying robot based on components of the shelf, In: Proceedings of Aerial Robotics Workshop, IROS

    Google Scholar 

  34. Reynolds H K, Rodriguez A A (1992) H control of a twin lift helicopter system, In: Proceedings of the 31st IEEE Conference on Decision and Contro, pages 2442–2447

    Google Scholar 

  35. Shakernia O, Sharp C S, Vidal R, Shim D H, Ma Y, Sastry S (2002) Multiple view motion estimation and control for landing an unmanned aerial vehicle, In: Proceedings of IEEE International Conference on Robotics and Automation

    Google Scholar 

  36. Shim H, Koo T J, Hoffman F, Sastry S (1998) A comprehensive study of control design of an autonomous helicopter, In: Proceedings of the 37th IEEE Conference on Decision and Control, pages 3653–3658

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Béjar, M., Ollero, A., Cuesta, F. (2007). Modeling and Control of Autonomous Helicopters. In: Bonivento, C., Marconi, L., Rossi, C., Isidori, A. (eds) Advances in Control Theory and Applications. Lecture Notes in Control and Information Sciences, vol 353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70701-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70701-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70700-4

  • Online ISBN: 978-3-540-70701-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics