GeRoMe: A Generic Role Based Metamodel for Model Management

  • David Kensche
  • Christoph Quix
  • Mohamed Amine Chatti
  • Matthias Jarke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4380)


The goal of Model Management is the development of new technologies and mechanisms to support the integration, evolution and matching of data models at the conceptual and logical design level. Such tasks are to be performed by means of a set of model management operators which work on models and their elements, without being restricted to a particular metamodel (e.g. the relational or UML metamodel).

We propose that generic model management should employ a generic metamodel (GMM) which serves as an abstraction of particular metamodels and preserves as much of the original features of modeling constructs as possible. A naive generalization of the elements of concrete metamodels in generic metaclasses would lose some of the specific features of the metamodels, or yield a prohibitive number of metaclasses in the GMM. To avoid these problems, we propose the Generic Role based Metamodel GeRoMe in which each model element is decorated with a set of role objects that represent specific properties of the model element. Roles may be added to or removed from elements at any time, which enables a very flexible and dynamic yet accurate definition of models.

Roles expose to operators different views on the same model element. Thus, operators concentrate on features which affect their functionality but may remain agnostic about other features. Consequently, these operators can use polymorphism and have to be implemented only once using GeRoMe, and not for each specific metamodel. We verified our results by implementing GeRoMe and a selection of model management operators using our metadata system ConceptBase.


Model Management Generic Role Export Operator Role Class Very Large Data Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atzeni, P., Cappellari, P., Bernstein, P.A.: A Multilevel Dictionary for Model Management. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, (̇eds.) ER 2005. 24th International Conference on Conceptual Modeling, Klagenfurt, Austria, October 24-28, 2005. LNCS, vol. 3716, pp. 160–175. Springer, Berlin Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-Independent Schema and Data Translation. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Boehm, K., Kemper, A., Grust, T., Boehm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 368–385. Springer, Berlin Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Atzeni, P., Torlone, R.: Management of Multiple Models in an Extensible Database Design Tool. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 79–95. Springer, Berlin Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Bachman, C.W., Daya, M.: The Role Concept in Data Models. In: Proceedings of the Third International Conference on Very Large Data Bases (VLDB), pp. 464–476. IEEE-CS and ACM, Tokyo, Japan (1977)Google Scholar
  5. 5.
    Barbosa, D., Freire, J., Mendelzon, A.O.: Information Preservation in XML-to-Relational Mappings. In: Bellahsène, Z., Milo, T., Rys, M., Suciu, D., Unland, R. (eds.) XSym 2004. LNCS, vol. 3186, pp. 66–81. Springer, Berlin Heidelberg New York (2004)Google Scholar
  6. 6.
    Baumeister, M., Jarke, M.: Compaction of Large Class Hierarchies in Databases for Chemical Engineering. In: 8. GI-Fachtagung für Datenbanksysteme in Büro, Technik und Wissenschaft (BTW), Freiburg, pp. 343–361. Springer, Berlin Heidelberg (1999)Google Scholar
  7. 7.
    Bernstein, P.A.: Applying Model Management to Classical Meta Data Problems. In: Proc. First Biennial Conference on Innovative Data Systems Research (CIDR2003). Asilomar, CA (2003)Google Scholar
  8. 8.
    Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A Vision for Management of Complex Models. SIGMOD Record 29(4), 55–63 (2000)CrossRefGoogle Scholar
  9. 9.
    Bernstein, P.A., Melnik, S., Mork, P.: Interactive Schema Translation with Instance-Level Mappings. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L. (eds.) Proc. 31st International Conference on Very Large Data Bases (VLDB), Trondheim, Norway, pp. 1283–1286. ACM Press, New York (2005)Google Scholar
  10. 10.
    Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Industrial-Strength Schema Matching. SIGMOD Record 33(4), 38–43 (2004)CrossRefGoogle Scholar
  11. 11.
    Bertino, E., Guerrini, G.: Objects with Multiple Most Specific Classes. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp. 102–126. Springer, Berlin Heidelberg New York (1995)Google Scholar
  12. 12.
    Elmasri, R.A., Navathe, S.B.: Fundamentals of Database Systems, 3rd edn. Addison-Wesley, Reading, Mass (1999)Google Scholar
  13. 13.
    Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings: Second-order dependencies to the rescue. ACM Transactions on Database Systems 30(4), 994–1055 (2005)CrossRefGoogle Scholar
  14. 14.
    Hanenberg, S., Unland, R.: Similarities, Differences, and Synergetic Potential. In: Bellahsène, Z., Patel, D., Rolland, C. (eds.) OOIS 2002. LNCS, vol. 2425, pp. 507–520. Springer, Berlin Heidelberg (2002)Google Scholar
  15. 15.
    Hernández, M.A., Miller, R.J., Haas, L.M.: Clio: A Semi-Automatic Tool For Schema Mapping. In: Proc. ACM SIGMOD Intl. Conference on the Management of Data, Santa Barbara, CA, p. 607. ACM Press, New York (2001)Google Scholar
  16. 16.
    Hull, R.: Relative Information Capacity of Simple Relational Database Schemata. SIAM Journal of Computing 15(3), 856–886 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hull, R., King, R.: Semantic Database Modeling: Survey, Applications, and Research Issues. ACM Computing Surveys 19(3), 201–260 (1987)CrossRefGoogle Scholar
  18. 18.
    ISO/IEC: Information technology – Information Resource Dictionary System (IRDS) Framework. International Standard ISO/IEC 10027:1990, DIN Deutsches Institut für Normung, e.V (1990)Google Scholar
  19. 19.
    Jeusfeld, M.A., Jarke, M., Nissen, H.W., Staudt, M.: ConceptBase – Managing Conceptual Models about Information Systems. In: Bernus, P., Mertins, K., Schmidt, G. (eds.) Handbook on Architectures of Information Systems, pp. 265–285. Springer-Verlag, Berlin Heidelberg New York (1998)Google Scholar
  20. 20.
    Jeusfeld, M.A., Johnen, U.A.: An Executable Meta Model for Re-Engineering of Database Schemas. In: Loucopoulos, P. (ed.) ER 1994. LNCS, vol. 881, pp. 533–547. Springer, Berlin Heidelberg New York (1994)Google Scholar
  21. 21.
    Kensche, D., Quix, C.: Transformation of Models in(to) a Generic Metamodel. submitted for publication.Google Scholar
  22. 22.
    Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Popa, L. (ed.) Proceedings of the Twenty-first ACM Symposium on Principles of Database Systems (PODS), Madison, Wisconsin, pp. 233–246. ACM Press, New York (2002)CrossRefGoogle Scholar
  23. 23.
    Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A Programming Platform for Generic Model Management. In: Proc. ACM SIGMOD Intl. Conference on Management of Data, San Diego, CA, pp. 193–204. ACM, New York (2003)CrossRefGoogle Scholar
  24. 24.
    Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: The Use of Information Capacity in Schema Integration and Translation. In: Agrawal, R., Baker, S., Bell, D.A. (eds.) Proc. 19th International Conference on Very Large Data Bases (VLDB), Dublin, Ireland, pp. 120–133. Morgan Kaufmann, San Francisco (1993)Google Scholar
  25. 25.
    Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing Knowledge About Information Systems. ACM Transactions on Information Systems 8(4), 325–362 (1990)CrossRefGoogle Scholar
  26. 26.
    Papotti, P., Torlone, R.: Heterogeneous Data Translation through XML Conversion. Journal of Web. Engineering 4(3), 189–204 (2005)Google Scholar
  27. 27.
    Pottinger, R., Bernstein, P.A.: Merging Models Based on Given Correspondences. In: Freytag, J.C., Lockemann, P.C., Abiteboul, S., Carey, M.J., Selinger, P.G., Heuer, A. (eds.) Proc. 29th International Conference on Very Large Data Bases (VLDB), Berlin, Germany, pp. 826–873. Morgan Kaufmann, San Francisco (2003)Google Scholar
  28. 28.
    Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  29. 29.
    Richardson, J., Schwarz, P.: Aspects: extending objects to support multiple, independent roles. In: Proc. ACM SIGMOD Intl. Conference on Management of Data, pp. 298–307. Denver, CO (1991)Google Scholar
  30. 30.
    Wong, R.K., Chau, H.L., Lochovsky, F.H.: A Data Model and Semantics of Objects with Dynamic Roles. In: Proc. 13th Intl. Conference on Data Engineering (ICDE), Birmingham, UK, pp. 402–411. IEEE Computer Society (1997)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • David Kensche
    • 1
  • Christoph Quix
    • 1
  • Mohamed Amine Chatti
    • 1
  • Matthias Jarke
    • 1
    • 2
  1. 1.RWTH Aachen University, Informatik V (Information Systems), 52056 AachenGermany
  2. 2.Fraunhofer FIT, Schloss Birlinghoven, 53574 St. AugustinGermany

Personalised recommendations