Advertisement

Encoding Classifications into Lightweight Ontologies

  • Fausto Giunchiglia
  • Maurizio Marchese
  • Ilya Zaihrayeu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4380)

Abstract

Classifications have been used for centuries with the goal of cataloguing and searching large sets of objects. In the early days it was mainly books; lately it has also become Web pages, pictures and any kind of digital resources. Classifications describe their contents using natural language labels, an approach which has proved very effective in manual classification. However natural language labels show their limitations when one tries to automate the process, as they make it very hard to reason about classifications and their contents. In this paper we introduce the novel notion of Formal Classification, as a graph structure where labels are written in a propositional concept language. Formal Classifications turn out to be some form of lightweight ontologies. This, in turn, allows us to reason about them, to associate to each node a normal form formula which univocally describes its contents, and to reduce document classification and query answering to reasoning about subsumption.

Keywords

Child Node Parent Node Description Logic Formal Concept Analysis Proper Noun 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: a new approach and an application. In: Proc. of the 2nd International Semantic Web Conference (ISWO’03). Sanibel Islands, Florida, USA (October 2003)Google Scholar
  3. 3.
    Lois Mai Chan and J.S. Mitchell. Dewey Decimal Classification: A Practical Guide. Forest P.,U.S., (December 1996)Google Scholar
  4. 4.
    eCl@ss: Standardized Material and Service Classification. see http://www.eclass-online.com/Google Scholar
  5. 5.
    Adami, G., Avesani, P., Sona, D.: Clustering documents in a web directory. In: Proceedings of Workshop on Internet Data management (WIDM-03) (2003)Google Scholar
  6. 6.
    Giunchiglia, F., Shvaiko, P.: Semantic matching. Knowledge Engineering Review 18(3), 265–280 (2003)CrossRefGoogle Scholar
  7. 7.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: An algorithm and an implementation of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Berlin Heidelberg (2004)Google Scholar
  8. 8.
    F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic schema matching. In: CoopIS (2005)Google Scholar
  9. 9.
    Giunchiglia, F., Yatskevich, M.: Element level semantic matching. In: Meaning Coordination and Negotiation workshop, ISWC (2004)Google Scholar
  10. 10.
    Giunchiglia, F., Yatskevich, M., Giunchiglia, E: Efficient semantic matching. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 272–280. Springer, Berlin Heidelberg (2005)Google Scholar
  11. 11.
    Gordon, A.D.: Classification. Monographs on Statistics and Applied Probability. Chapman-Hall/CRC, Second edition (1999)Google Scholar
  12. 12.
    Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The instance store: DL reasoning with large numbers of individuals. In: Proc. of the 2004 Description Logic Workshop (DL 2004), pp. 31–40 (2004)Google Scholar
  13. 13.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  14. 14.
    Johnson-Laird: Mental Models. Harvard University Press, Cambridge (1983)Google Scholar
  15. 15.
    Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: Fisher, D.H. (ed.) Proceedings of ICML-97. 14th International Conference on Machine Learning, Nashville, US, pp. 170–178. Morgan Kaufmann Publishers, San Francisco, US (1997)Google Scholar
  16. 16.
    Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM 38(11), 33–38 (1995)CrossRefGoogle Scholar
  17. 17.
    Bernardo Magnini, Luciano Serafini, and Manuela Speranza. Making explicit the semantics hidden in schema models. In: Proceedings of the Workshop on Human Language Technology for the Semantic Web and Web Services, held at ISWC-2003, Sanibel Island, Florida (October 2003)Google Scholar
  18. 18.
    McGuinness, D.L., Shvaiko, P., Giunchiglia, F., da Silva, P.P.: Towards explaining semantic matching. In: International Workshop on Description Logics at KR’04 (2004)Google Scholar
  19. 19.
    Miller, G.: WordNet: An electronic Lexical Database. MIT Press, Cambridge, MA (1998)Google Scholar
  20. 20.
    Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.M.: Text classification from labeled and unlabeled documents using EM. Machine Learning 39(2/3), 103–134 (2000)zbMATHCrossRefGoogle Scholar
  21. 21.
    Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. 33(4), 65–70 (2004)CrossRefGoogle Scholar
  22. 22.
    The OpenNLP project. See http://opennlp.sourceforge.net/Google Scholar
  23. 23.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)CrossRefGoogle Scholar
  24. 24.
    Serafini, L., Zanobini, S., Sceffer, S, Bouquet, P.: Matching hierarchical classifications with attributes. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 4–18. Springer, Berlin Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, London, UK (1984)zbMATHGoogle Scholar
  26. 26.
    Sun, A., Lim, E.-P.: Hierarchical text classification and evaluation. In: ICDM, pp. 521–528 (2001)Google Scholar
  27. 27.
    MeSH: The National Library of Medicine’s controlled vocabulary thesaurus. see http://www.nlm.nih.gov/mesh/Google Scholar
  28. 28.
    DMoz: The Open Directory Project. See http://dmoz.org/Google Scholar
  29. 29.
    Uschold, M., Gruninger, M.: Ontologies and semantics for seamless connectivity. SIGMOD Rec. 33(4), 58–64 (2004)CrossRefGoogle Scholar
  30. 30.
    van Assem, M., Menken, M.R., Schreiber, G., Wielemaker, J., Wielinga, B.: A method for converting thesauri to RDF/OWL. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 17–31. Springer, Berlin Heidelberg New York (2004)Google Scholar
  31. 31.
    Wille, R.: Concept lattices and conceptual knowledge systems. Computers and Mathematics with Applications 23, 493–515 (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Fausto Giunchiglia
    • 1
  • Maurizio Marchese
    • 1
  • Ilya Zaihrayeu
    • 1
  1. 1.Department of Information and Communication Technology, University of TrentoItaly

Personalised recommendations