Context Dependency Management in Ontology Engineering: A Formal Approach

  • Pieter De Leenheer
  • Aldo de Moor
  • Robert Meersman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4380)


A viable ontology engineering methodology requires supporting domain experts in gradually building and managing increasingly complex versions of ontological elements and their converging and diverging interrelationships. Contexts are necessary to formalise and reason about such a dynamic wealth of knowledge. However, context dependencies introduce many complexities. In this article, we introduce a formal framework for supporting context dependency management processes, based on the DOGMA framework and methodology for scalable ontology engineering. Key notions are a set of context dependency operators, which can be combined to manage complex context dependencies like articulation, application, specialisation, and revision dependencies. In turn, these dependencies can be used in context-driven ontology engineering processes tailored to the specific requirements of collaborative communities. This is illustrated by a real-world case of interorganisational competency ontology engineering.


context-driven ontology engineering context dependency management ontology evolution ontology management lexical disambiguation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gruber, T.: Cyc: a translation approach to portable ontologies. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  2. 2.
    Guarino, N.: Formal ontology and information systems. In: Formal Ontologies in Information Systems (FOIS98). 1st Int’l Conf, pp. 3–15. IOS Press, Trento, Italy (1998)Google Scholar
  3. 3.
    Meersman, R.: The use of lexicons and other computer-linguistic tools in semantics, design and cooperation of database systems. In: Proc. of the Conf. on Cooperative Database Systems (CODAS 99), pp. 1–14. Springer, Singapore Berlin Heidelberg New York (1999)Google Scholar
  4. 4.
    Ushold, M., Gruninger, M.: Ontologies: Principles, methods and applications. The Knowledge Engineering Review 11(2), 93–136 (1996)Google Scholar
  5. 5.
    Farquhar, A., Fikes, R., Rice, J.: The ontolingua server: a tool for collaborative ontology construction. Int’l Journal of Human-computer Studies 46(6), 707–727 (1997)CrossRefGoogle Scholar
  6. 6.
    de Moor, A.: Ontology-guided meaning negotiation in communities of practice. In: Mambrey, P., Gräther, W., (eds.): Proc. of the Workshop on the Design for Large-Scale Digital Communities at the 2nd International Conference on Communities and Technologies. C&T 2005, Milano, Italy. (2005)Google Scholar
  7. 7.
    McCarthy, J.: Notes on formalizing context. In: Proc. of the 15th Int. Joint Conf. Artificial Intelligence (IJCAI93), pp. 555–560. Morgan Kaufmann, Chambéry, France (1993)Google Scholar
  8. 8.
    Sowa, J.: Peircean foundations for a theory of context. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 41–64. Springer, Berlin Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Farquhar, A., Dappert, A., Fikes, R., Pratt, W.: Integrating information sources using context logic. In: Knoblock, C., Levy, A. (eds.): Information Gathering from Heterogeneous, Distributed Environments, Stanford University, Stanford, California (1995)Google Scholar
  10. 10.
    Buvač, S., Fikes, R.: A declarative formalization of knowledge translation. In: Proc. of 4th Int’l Conf. on Information and Knowledge Management (ACM CIKM 95). (1995)Google Scholar
  11. 11.
    Giunchiglia, F.: Contextual reasoning. Special issue on I Linguaggi e le Macchine XVI, 345–364 (1993)Google Scholar
  12. 12.
    Nayak, P.: Representing multiple theories. In: Proc. of the 12 Nat’l Conf. on Artificial Intelligence (AAAI94), Seattle, Washington. AAAI Press (1994)Google Scholar
  13. 13.
    McCarthy, J., Buvač, S.: Formalizing context (expanded notes). Technical Report STAN-CS-TN-94-13, Stanford University (1994)Google Scholar
  14. 14.
    Buvač, S.: Resolving lexical ambiguity using a formal theory of context. In: Van Deemter, K., Peters, S. (eds.) Semantic Ambiguity and Underspecification, CSLI Publications, Stanford, CA (1996)Google Scholar
  15. 15.
    Meersman, R.: Reusing certain database design principles, methods and techniques for ontology theory, construction and methodology. Technical report, VUB STAR Lab, Brussels (2001)Google Scholar
  16. 16.
    De Leenheer, P., de Moor, A.: Context-driven disambiguation in ontology elicitation. In: Shvaiko, P., Euzenat, J. (eds.) Context and Ontologies: Theory, Practice, and Applications. Proc. of the 1st Context and Ontologies Workshop, AAAI/IAAI 2005, Pittsburgh, USA, July 9, 2005. pp. 17–24 (2005)Google Scholar
  17. 17.
    Guha, R.D.L.: Cyc: a midterm report. AI Magazine 11(3), 32–59 (1990)Google Scholar
  18. 18.
    Guha, R.: Contexts: A formalization and some applications. Technical Report STAN-CS-91-1399, Stanford Computer Science Department, Stanford, California (1991)Google Scholar
  19. 19.
    Theodorakis, M.: Contextualization: An Abstraction Mechanism for Information Modeling. PhD thesis, University of Crete, Greece (1999)Google Scholar
  20. 20.
    Guha, R., McCarthy, J.: Varieties of contexts. In: CONTEXT 2003. pp. 164–177 (2003)Google Scholar
  21. 21.
    Berners-Lee, T.: Weaving the Web. Harper (1999)Google Scholar
  22. 22.
    Guha, R., McCool, R., Fikes, R.: Contexts for the semantic web. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer, Berlin Heidelberg New York (2004)Google Scholar
  23. 23.
    Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-owl: Contextualizing ontologies. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Berlin Heidelberg New York (2003)Google Scholar
  24. 24.
    Singh, M.: The pragmatic web: Preliminary thoughts. In: Proc. of the NSF-OntoWeb Workshop on Database and Information Systems Research for Semantic Web and Enterprises. pp. 82–90 (2002)Google Scholar
  25. 25.
    Schoop, M.: de Moor, A., Dietz, J.: The pragmatic web: A manifesto. Communications of the ACM 49(5) (2006)Google Scholar
  26. 26.
    Bachimont, B., Troncy, R., Isaac, A.: Semantic commitment for designing ontologies: a proposal. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNAI (LNCS), vol. 2473, pp. 114–121. Springer, Berlin Heidelberg New York (2002)Google Scholar
  27. 27.
    Euzenat, J.: Le Bach, T., Barrasa, J., et al.: State of the art on ontology alignment. Knowledge web deliverable KWEB/2004/d2.2.3/v1.2 (2004)Google Scholar
  28. 28.
    Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. In: Proc. of the Dagstuhl Seminar on Semantic Interoperability and Integration (Dagstuhl, Germany). (2005)Google Scholar
  29. 29.
    Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology versioning and change detection on the web. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNAI (LNCS), vol. 2473, Springer, Berlin Heidelberg (2002)Google Scholar
  30. 30.
    De Leenheer, P., Kopecky, J., Sharf, E., de Moor, A.: A versioning tool for ontologies EU IP DIP (FP6-507483) Deliverable D2.4 (2006)Google Scholar
  31. 31.
    de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A meaning evolution support system for interorganizational ontology engineering. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNAI (LNCS), vol. 4068, pp. 189–203. Springer, Berlin Heidelberg New York (2006)CrossRefGoogle Scholar
  32. 32.
    Ding, Y., Fensel, D.: Ontology library systems: The key to succesful ontology re-use. In: Proc. of the 1st Semantic Web Symposium (SWWS01) (Stanford, California). (2001)Google Scholar
  33. 33.
    Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontology engineering. SIGMOD Record 31(4), 12–17 (2002)CrossRefGoogle Scholar
  34. 34.
    Sowa, J.: Knowledge Representation - Logical, Philosophical and Computational Foundations. Brooks/Cole Publishing Co. (2000)Google Scholar
  35. 35.
    Gómez-Pérez, A., Manzano-Macho, D.: A survey of ontology learning methods and techniques. OntoWeb Deliverable D1.5 (2003)Google Scholar
  36. 36.
    Reinberger, M.L., Spyns, P.: Unsupervised text mining for the learning of DOGMA-inspired ontologies. In: Buitelaar, P., Handschuh, S., Magnini, B. (eds.) Ontology Learning and Population, IOS Press, Trento, Italy (2005)Google Scholar
  37. 37.
    Verheijen, G. Van Bekkum, J.: NIAM, an information analysis method. In: Proc. of the IFIP TC-8 Conference on Comparative Review of Information System Methodologies (CRIS 82), North-Holland (1982)Google Scholar
  38. 38.
    Halpin, T.: Information Modeling and Relational Databases (From Conceptual Analysis to Logical Design). Morgan Kauffman, Washington, USA (2001)Google Scholar
  39. 39.
    Verheyden, P., De Bo, J., Meersman, R.: Semantically unlocking database content through ontology-based mediation. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 109–126. Springer, Berlin Heidelberg (2005)Google Scholar
  40. 40.
    Jarrar, M., Demey, J., Meersman, R.: On reusing conceptual data modeling for ontology engineering. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics I. LNCS, vol. 2800, pp. 185–207. Springer, Berlin Heidelberg (2003)Google Scholar
  41. 41.
    Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation of ontology interdependencies. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 86–100. Springer, Berlin Heidelberg New York (2000)Google Scholar
  42. 42.
    De Bo, J., Spyns, P., Meersman, R.: Assisting ontology integration with existing thesauri. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3290, pp. 801–818. Springer, Berlin Heidelberg (2004)Google Scholar
  43. 43.
    Fellbaum, C. (ed.): Wordnet, an Electronic Lexical Database. MIT Press, Cambridge, MA (1998)Google Scholar
  44. 44.
    Putnam, H.: Mind, Language, and Reality. Cambridge University Press, Cambridge (1962)Google Scholar
  45. 45.
    Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, London, UK (1984)zbMATHGoogle Scholar
  46. 46.
    Brachman, R., McGuiness, D., Patel-Schneider, P., Resnik, L., Borgida, A.: Living with classic: When and how to use a KL-ONE-like language. In: Sowa, J. (ed.) Principles of Semantic Networks, pp. 401–456. Morgan Kaufmann, Washington, USA (1991)Google Scholar
  47. 47.
    Rastier, F., Cavazza, M., Abeillé, A.: Sémantique pour L’analyse. Masson, Paris (1994)Google Scholar
  48. 48.
    Banerjee, J., Kim, W.: Semantics and implementation of schema evolution in object-oriented databases. In: ACM SIGMOD Conf. SIGMOD Record. pp. 311–322 (1987)Google Scholar
  49. 49.
    Noy, N., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowledge and Information Systems 6(4), 428–440 (2004)CrossRefGoogle Scholar
  50. 50.
    Kim, W., Chou, H.: Versions of schema for object-oriented databases. In: Very Large Data Bases. 14th Int’l Conf. (VLDB88), pp. 148–159. Morgan Kaufmann, L.A., CA (1988)Google Scholar
  51. 51.
    Roddick, J.: A survey of schema versioning issues for database systems. Information and Software Technology 37(7), 383–393 (1995)CrossRefGoogle Scholar
  52. 52.
    Lerner, B.: A model for compound type changes encountered in schema evolution. ACM Transactions on Database Systems (TODS) 25(1), 83–127 (2000)CrossRefGoogle Scholar
  53. 53.
    De Leenheer, P.: Revising and managing multiple ontology versions in a possible worlds setting. In: Meersman, R., Tari, Z., Corsaro, A. (eds.) OTM 2004 Workshops. LNCS, vol. 3292, pp. 798–818. Springer Verlag, Berlin Heidelberg New York (2004)Google Scholar
  54. 54.
    Oliver, D., Shahar, Y., Musen, M., Shortliffe, E.: Representation of change in controlled medical terminologies. AI in Medicine 15(1), 53–76 (1999)Google Scholar
  55. 55.
    Heflin, J.: Towards the Semantic Web: Knowledge Representation in a Dynamic, Distributed Environment. PhD thesis, University of Maryland, Collega Park, MD, USA (2001)Google Scholar
  56. 56.
    Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-driven ontology evolution management. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNAI (LNCS), vol. 2473, Springer, Berlin Heidelberg (2002)Google Scholar
  57. 57.
    Mens, T.: A state-of-the-art survey on software merging. IEEE Transactions on Software Engineering 28(5), 449–462 (2002)CrossRefGoogle Scholar
  58. 58.
    Edwards, W., Igarashi, T., LaMarca, A., Mynatt, E.: A temporal model for multi-level undo and redo. In: Press, A., (ed.): Proc. of the 13th annual ACM symposium on User interface software and technology (San Diego, CA). pp. 31–40 (2000)Google Scholar
  59. 59.
    Berlage, T., Genau, A.: A framework for shared applications with a replicated architecture. In: Press, A., (ed.): Proc. of the 6th annual ACM symposium on User interface software and technology (Atlanta, GA). pp. 249–257 (1993)Google Scholar
  60. 60.
    Mens, T.: Conditional graph rewriting as a domain-independent formalism for software evolution. In: Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 127–143. Springer, Berlin Heidelberg New York (2000)Google Scholar
  61. 61.
    Löwe, M.: Algebraic approach to single-pushout graph transformations. Theoretical Computer Science 109, 181–224 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Shamsfard, M., Barforoush, A.: The state of the art in ontology learning: a framework for comparison. the Knowledge Engineering Review 18(4), 293–316 (2003)CrossRefGoogle Scholar
  63. 63.
    Beale, S., Nirenburg, S., Mahesh, K.: Semantic analysis in the MikroKosmos machine translation project. In: Proc. of the 2nd Symposium on Natural Language Processing, (Bangkok, Thailand). pp. 297–307 (1995)Google Scholar
  64. 64.
    (OpenCyc) http://www.opencyc.orgGoogle Scholar
  65. 65.
    Lenat, D.: The dimensions of context-space. Cycorp technical report (1998)Google Scholar
  66. 66.
    Jarrar, M., Heymans, S.: Unsatisfiability reasoning in orm conceptual schemes. In: Proc. of Int’l Conf. on Semantics of a Networked World (Munich, Germany). Lecture Notes in Artificial Intelligence, Springer, Berlin Heidelberg New York (2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Pieter De Leenheer
    • 1
  • Aldo de Moor
    • 1
  • Robert Meersman
    • 1
  1. 1.Semantics Technology and Applications Research Laboratory (STARLab), Department of Computer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 BRUSSELS 5Belgium

Personalised recommendations