Skip to main content

Computation of Permeability of Textile with Experimental Validation for Monofilament and Non Crimp Fabrics

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 55))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angot P (1999) Analysis of singular perturbations on the brinkman problem for fictious domain models of viscous flow. Mathematical methods in the applied sciences, 22:1395-1412

    Article  MATH  MathSciNet  Google Scholar 

  • Angot P, Bruneau C, Fabrie P (1999) A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 81:497-520

    Article  MATH  MathSciNet  Google Scholar 

  • Bell J, Colella P, Glaz H (1989) A second-order projection method for the incompressible navier-stokes equations. Journal of Computational Physics, 85:257-283

    Article  MATH  MathSciNet  Google Scholar 

  • Belov E, Lomov S, Verpoest I, Peeters T, Roose D (2004) Modelling of permeability of textile reinforcements:lattice boltzmann method. Composites Science and Technology pp 1069-1080

    Google Scholar 

  • Berdichevski A, Cai Z (1993) Preform permeability predictions by selfcon-sistent method and finite element simulation. Polymer Composites, 14(2):132-43

    Article  Google Scholar 

  • Briggs W, Emden HV, McCormick S (2000) A Multigrid Tutorial, Second edition. SIAM, Philadelphia

    MATH  Google Scholar 

  • Brown D, Cortez R, Minion M (2001) Accurate projection methods for the incompressible navier-stokes equations. Journal of Computational Physics, 186:464-499

    Article  MathSciNet  Google Scholar 

  • Desplentere F, Lomov S, Verpoest I (2004) Influence of the scatter of perform permeability on the mould filling:Numerical simulations. In:Proceedings of the 25th International SAMPE Europe Conference, Paris, pp 331-336

    Google Scholar 

  • Desplentere F, Lomov S, Woerdeman D, Verpoest I, Wevers M, Bogdanovich A (2005) Micro-ct characterization of variability in 3d textile architecture. Composites part A, 65:1920-1930

    Google Scholar 

  • Gebart B (1992) Permeability of unidirectional reinforcements for rtm. Journal of Composite Materials, 26(8):1100-33

    Article  Google Scholar 

  • Griebel M (2004)http://wissrech.iam.uni-bonn.de/research/projects/nast3dgp

  • Griebel M, Dornseifer T, Neunhoeffer T (1998) Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, Philadelphia

    Google Scholar 

  • Hoes K (2003) Development of a new sensor-based setup for experimental permeability identification of fibrous media. PhD thesis, Vrije Universiteit Brussel

    Google Scholar 

  • Hoes K, Dinesku D, Vanhuele M, Sol H, Parnas R, Belov E, Lomov S (2001) Statistical distribution of permeability values of different porous materials. In:Sol H, Degrieck J (eds) 10th European Conference on Composite Materials (ECCM-10)

    Google Scholar 

  • Lomov S, Gusakov A, Huysmansa G, Prodromou A, Verpoest I (2000) Textile geometry preprocessor for meso-mechanical models of woven composites. Composites Science and Technology, 60:2083-2095

    Article  Google Scholar 

  • Lomov S, Huysmans G, Luo Y, Parnas R, Prodromou A, Verpoest I, Phelan F (2001) Textile composites models:Integrating strategies. Composites part A, 32(10):1379-1394

    Article  Google Scholar 

  • Lomov S, Belov E, Bischoff T, Ghosh S, Chi TT, Verpoest I (2002a) Carbon composites based on multiaxial multiply stitched preforms. part 1:Geometry of the preform. Composites part A, 33(9):1171-1183

    Article  Google Scholar 

  • Lomov S, Nakai A, Parnas R, Ghosh SB, Verpoest I (2002b) Experimental and theoretical characterisation of the geometry of flat two-and three-axial braids. Textile Research Journal, 72(8):706-712

    Article  Google Scholar 

  • Lomov S, Verpoest I, Peeters T, Roose D, Zako M (2002c) Nesting in textile laminates:geometrical modelling of the laminate. Composites Science and Technology

    Google Scholar 

  • Lomov S, Chi TT, Verpoest I, Peeters T, Roose D, Boisse P, Gasser A (2003) Mathematical modelling of internal geometry and deformability of woven preforms. International Journal of Forming Processes, 6(3-4):413-442

    Article  Google Scholar 

  • Moesen M, Lomov S, Verpoest I (2003) Modelling of the geometry of weft-knit fabrics. In:TechTextil Symposium, Frankfurt, pp CD-Edition MPI (1994) http://www-unix.mcs.anl.gov/mpi/

  • Phelan F, Wise G (1996) Analysis of transverse flow in aligned fibrous porous media. Composites part A, 27A:25-34

    Article  Google Scholar 

  • Simacek P, Advani S (2004) Desirable features in mold filling simulations for liquid composite molding processes. Polymer Composites, 25(4):355-367

    Article  Google Scholar 

  • Slattery J (1972) Momentum, energy and mass transfer in continua. McGraw-Hill, New York

    Google Scholar 

  • Spaid M, Phelan F (1997) Lattice boltzmann method for modeling microscale flow in fibrous porous media. Physics of fluids, 9(9):2468-74

    Article  MATH  MathSciNet  Google Scholar 

  • Trochu F, Ruiz E, Achim V, Soukane S (2006) Advanced numerical simulation of liquid composite molding for process analysis and optimization. Composites Part A-Applied Science and Manufacturing, 37(6):890-902

    Article  Google Scholar 

  • Varonos A, Bergeles G (1998) Development and assessment of a variableorder non-oscillatory scheme for convection term discretization. Int J Numer Methods Fluids, 26:1-16

    Article  MATH  MathSciNet  Google Scholar 

  • Verleye B, Klitz M, Croce R, Griebel M, Lomov S, Roose D, Verpoest I (2006) Predicting the permeability of textile reinforcements via a hybrid navier-stokes/brinkman solver. In:8th International conference on flow processes in composite materials, Douai, France

    Google Scholar 

  • Verpoest I, Lomov S (2005) Virtual textile composites software wisetex:integration with micro-mechanical, permeability and structural analysis. Composites Science and Technology, 65(15-16):2563-2574

    Article  Google Scholar 

  • van der Vorst H (1992) Bi-cgstab:A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput, 13:631-344

    Article  MATH  Google Scholar 

  • Westhuizen J, Plessis JD (1994) Quantification of unidirectional fiber bed permeability. Journal of Composite Materials, 28(7):38-44

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Verleye, B., Klitz, M., Croce, R., Roose, D., Lomov, S.V., Verpoest, I. (2007). Computation of Permeability of Textile with Experimental Validation for Monofilament and Non Crimp Fabrics. In: Zeng, X., Li, Y., Ruan, D., Koehl, L. (eds) Computational Textile. Studies in Computational Intelligence, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70658-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70658-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70656-4

  • Online ISBN: 978-3-540-70658-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics