Skip to main content

The Geochemistry of the Paranamp;#x00E1; River: An Overview

  • Chapter
The Middle Paraná River

Abstract

River basins are not inert continental features. Moreover, it can be said that rivers have a life, and their evolution is usually predictable. In biological terms, for example, rivers are processors of materials as the biota they contain take up, convert, use, and release resources that come to them. In other words, rivers are active biological systems that metabolize the organic matter they transport. From a geological point of view, rivers transport sediments and solutes whose dynamics is also determined by a set of complex interacting variables, such as lithology, climate, and relief. Consequently, the water that reaches a river's mouth is far different, both qualitatively and quantitatively, from the water that entered the system as rain or snowfall. Summarizing, the chemical signatures of rivers are reflections of complex natural and interdependent relationships involving the chemistry of precipitation, the weathering of minerals, the cycling of vegetation, and the evolution or history of its water. The recently published geochemical treatise (Drever 2005) is a major step towards the elucidation of such complexities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araújo LM, França AB, Potter PE (1999) Hydrogeology of the Mercolsul aquifer system in the Paraná and Chaco-Paraná Basins, South America, and comparison with the Navajo-Nugget aquifer system, USA. Hydrogeol J 7:317–336.

    Article  Google Scholar 

  • Bathia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627.

    Article  Google Scholar 

  • Bathia MR, Crook KAW (1986) Trace elements characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Miner Petrol 92:181–193.

    Article  Google Scholar 

  • Bonetto C, Villar C, de Cabo L, Vaithiyanathan P (1998) Hydrochemistry of a large floodplain river. Verh Int Ver Limnol 26:899–902.

    CAS  Google Scholar 

  • Boulanger JP, Leloup J, Penalba O, Rusticucci M, Lafon F, Vargas W (2005) Observed precipitation in the Paraná-Plata hydrological basin: long-term trends, extreme conditions and ENSO teleconnections. Climate Dynam 24:393–413.

    Article  Google Scholar 

  • Collischonn W, Tucci CEM, Clarke RT (2001) Further evidence of changes in the hydrological regime of the River Paraguay: part of a wider phenomenon of climate change. J Hydrol 245:218–238.

    Article  Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediments recycling and basement composition on evolution of mudrocks chemistry in the southwestern United States. Geochim Cosmochim Acta 59:2919–2940.

    Article  CAS  Google Scholar 

  • Cullers RL, Barrett T, Carlson R, Robinson B (1987) Rare-earth elements and mineralogic changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA. Chem Geol 63:275–297.

    Article  CAS  Google Scholar 

  • Cullers RL (1994) The chemical signature of source rocks in size fractions of Holocene stream sediments derived from metamorphic rocks in the Wet Mountains region, Colorado, USA. Chem Geol 113:327–343.

    Article  CAS  Google Scholar 

  • de Assis Janasi V (2002) Elemental and Sr-Nd isotope geochemistry of two Neoproterozoic mangerite suites in SE Brazil: implications for the origin of the mangerite-charnockite-granite series. Precamb Res 119:301–327.

    Article  Google Scholar 

  • Degens ET, Kempe S, Richey JE (eds) (1991) Biogeochemistry of major world rivers. SCOPE 42. Wiley, Chichester.

    Google Scholar 

  • Depetris PJ (1976) Hydrochemistry of the Paraná River. Limnol Oceanogr 21:736–739.

    Article  CAS  Google Scholar 

  • Depetris PJ, Kempe S (1990) The impact of the El Niño event on the Paraná River, its discharge and carbon transport. Paleogeogr Palaeoclimatol Palaeoecol (Global and Planetary Change Section) 89:239–244.

    Article  Google Scholar 

  • Depetris PJ, Kempe S (1993) Carbon dynamics and sources in the Paraná River. Limnol Oceanogr 387:382–395.

    Article  Google Scholar 

  • Depetris PJ, Gaiero DM (1998) Water-surface slope, total suspended sediment and particulate organic carbon variability in the Paraná River during extreme flooding. Naturwissenschaften 85:26–28.

    Article  CAS  Google Scholar 

  • Depetris PJ, Probst JL, Pasquini AI, Gaiero DM (2003) The geochemical characteristics of the Paraná River suspended sediment load: an initial assessment. Hydrolog Process 17:1267–1277.

    Article  Google Scholar 

  • Depetris PJ (2005) Revisiting biogeochemical aspects of the Paraná River. In: Heathwaite L, Webb B, Rosenberry D, Weaver D, Hayashi M (eds) Dynamics and biogeochemistry of river corridors and wetlands. IAHS Publ. 294. International Association of Hydrological Sciences, Wallingford, pp 159–166.

    Google Scholar 

  • Dore MHI (2005) Climate change and changes in global precipitation patterns: What do we know? Environment International 31:1167–1181.

    Article  PubMed  Google Scholar 

  • Drago E, Vassallo M (1980) Campaña limnológica (Keratela I) en el río Paraná medio: características físicas y químicas del río y ambientes leníticos asociados. Ecol Argentina 4:45–54.

    Google Scholar 

  • Drago EC, Amsler ML (1988) Suspended sediment at a cross section of the Middle Paraná River: concentration, granulometry and influence of the main tributaries. In: Bordas MP, Walling DE (eds) Sediment budgets. IAHS Publ. 174. International Association of Hydrological Sciences, Wallingford, pp 381–396.

    Google Scholar 

  • Drago EC, Amsler ML (1998) Bed sediment characteristics in the Paraná and Paraguay Rivers. Water International 23:174–183.

    Article  Google Scholar 

  • Drever JI (ed) (2005) Surface and ground water, weathering, and soils. Treatise on Geochemistry 5. Elsevier, Amsterdam.

    Google Scholar 

  • Gaillardet J, Dupré B, Allègre CJ (1999) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63:4037–4051.

    Article  Google Scholar 

  • Gaillardet J, Viers J, Dupré B (2005) Trace elements in river waters. In: Drever JI (ed) Surface and ground water, weathering, and soils, vol 5. Elsevier, Amsterdam, pp 225–272.

    Google Scholar 

  • García NO, Mechoso CR (2005) Variability in the discharge of South American rivers and in climate. Hydrolog Sci J 50:459–477.

    Article  Google Scholar 

  • Genta JL, Perez-Irigarren G, Mechoso CR (1998) A recent increasing trend in the streamflow of rivers in Southeastern South America. J Climate 11:2858–2862.

    Article  Google Scholar 

  • Goldstein SJ, Jacobsen SB (1988) Rare earth elements in river waters. Earth Planet Sci Lett 89:35–47.

    Article  CAS  Google Scholar 

  • Hannigan RE, Sholkovitz ER (2001) The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals. Chem Geol 175:495–508.

    Article  CAS  Google Scholar 

  • Harnois L (1988) The CIW index: a new chemical index of weathering. Sediment Geol 55:319–322.

    Article  CAS  Google Scholar 

  • Henry F, Probst JL, Thouron D, Depetris PJ, Garçon V (1996) Nd-Sr isotopic compositions of dissolved and particulate material transported by the Paraná and Uruguay rivers during high (December 1993) and low (September 1994) waters periods. Sci Géol Bull 49:89–100.

    CAS  Google Scholar 

  • Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Petrol 58:820–829.

    CAS  Google Scholar 

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour 20:107–121.

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314.

    Article  CAS  Google Scholar 

  • Iacumin M, De Min A, Piccirillo EM, Bellieni G (2003) Source mantle heterogeneity and its role in the genesis of Late Archean-Proterozoic (2.7–1.0 Ga) and Mesozoic (200 and 130 Ma) tholeiitic magmatism in the South American Platform. Earth Sci Rev 62:365–397.

    Article  CAS  Google Scholar 

  • Iriondo MH (1972) Mapa geomorfológico de la llanura aluvial del río Paraná desde Helvecia hasta San Nicolás, República Argentina. Revista de la Asociación Geológica Argentina 27:155–160.

    Google Scholar 

  • Iriondo MH (1988) A comparison between the Amazon and Paraná River systems. In: Degens E, Kempe S, Naidu S (eds) Transport of carbon and minerals in major worlds rivers, lakes and estuaries, vol 66. Mitt Geol Palaönt Inst Univ Hamburg, Hamburg, pp 77–92.

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London.

    Google Scholar 

  • Killops SD, Killops VJ (1994) An introduction to organic geochemistry. Longman Scientific & Technical, Essex.

    Google Scholar 

  • Labat D, Ronchail J, Guyot JL (2005) Recent advances in wavelet analyses: part 2–Amazon, Paraná, Orinoco and Congo discharges time scale variability. J Hydrol 314:289–311.

    Article  Google Scholar 

  • Livingstone DA (1963) Chemical composition of rivers and lakes. Data of geochemistry. US Geol Surv Prof Paper 440 G:G1–G64.

    Google Scholar 

  • Lucassen F, Becchio R, Harmon R, asemann S, Franz G, Trumbull R, Wilke HG, Romeer RL, Dulski P (2001) Composition and density model of the continental crust at an active continental margin—the Central Andes between 21° and 27°S. Tectonophysics 341:195–223.

    Article  CAS  Google Scholar 

  • Maglianesi R (1973) Principales características químicas y físicas de las aguas del Alto Paraná y Paraguay inferior. Physis B 32 85:185–197.

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Liping DR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Rev Mineral 21:169–200.

    Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050.

    Article  CAS  Google Scholar 

  • McLennan SM, Bock B, Hemming SR, Hurowitz JA, Lev SM, McDaniel DK (1993) The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks. In: Lentz DR (ed) Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral deposits-forming environments, vol. Geo Text 4. Geol Assoc Canada, Alberta, pp 7–38.

    Google Scholar 

  • McLennan SM (1993) Weathering and global denudation. J Geol 101:295–303.

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259.

    Article  Google Scholar 

  • Meybeck M (2005) Global occurrence of major elements in rivers. In: Drever JI (ed) Surface and ground water, weathering, and soils, vol 5. Elsevier, Amsterdam, pp 207–223.

    Google Scholar 

  • Nakken M (1999) Wavelet analysis of rainfall-runoff variability isolating climatic from anthropogenic patterns. Environ Model Softw 14:283–295.

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major elements chemistry of lutites. Nature 299:715–717.

    Article  CAS  Google Scholar 

  • Nesbitt HW, Young GM, McLennan SM, Keays RR (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J Geol 104:525–542.

    Article  CAS  Google Scholar 

  • Orfeo O, Stevaux J (2002) Hydraulic and morphological characteristics of middle and upper reaches of the Paraná River (Argentina and Brazil). Geomorphology 44:309–322.

    Article  Google Scholar 

  • Pasquini AI, Depetris PJ, Gaiero DM, Probst JL (2005) Material sources, chemical weathering and physical denudation in the Chubut River basin (Patagonia, Argentina): implications for Andean Rivers. J Geol 113:451–469.

    Article  CAS  Google Scholar 

  • Pasquini AI, Depetris PJ (2007) Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: An overview. J Hydrol 333:385–399.

    Article  Google Scholar 

  • Perdue EM, Ritchie JD (2005) Dissolved organic matter in freshwaters. In: Drever JI (ed) Surface and ground water, weathering, and soils, vol 5. Elsevier, Amsterdam, pp 273–318.

    Google Scholar 

  • Potter PE (1997) The Mesozoic and Cenozoic paleodrainage of South America: a natural history. J South Am Earth Sci 10:331–344.

    Article  Google Scholar 

  • Potter PE, Hamblin WK (2006) Big rivers worldwide. Brigham Young University Geology Studies, Provo.

    Google Scholar 

  • Ravenga C, Murray S, Abramovitz J, Hammond A (1998) Watersheds of the world: ecological value and vulnerability. World Resources Institute, Washington DC.

    Google Scholar 

  • Robertson AW, Mechoso CR (1998) Interannual and decadal cycles in river flows of Southeastern South America. J Climate 11:2570–2581.

    Article  Google Scholar 

  • Robertson AW, Mechoso CR (2000) Interannual and interdecadal variability of the South Atlantic Convergence Zone. J Climate 11:2947–2957.

    Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstones-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94:635–650.

    Article  CAS  Google Scholar 

  • Sallet R, Moritz R, Fontignie D (2005) The use of vein fluorite as probe for paleofluid REE and Sr-Nd isotope geochemistry: the Santa Catarina fluorite district, Southern Brazil. Chem Geol 223:227–248.

    Article  CAS  Google Scholar 

  • Sholkovitz ER (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat Geochem 1:1–34.

    Article  CAS  Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res 88:9617–9688.

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters. Wiley InterScience, New York.

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Oxford, Blackwell.

    Google Scholar 

  • Thorne CR (2002) Geomorphic analysis of large alluvial rivers. Geomorphology 44:203–219.

    Article  Google Scholar 

  • Tossini L (1959) Sistema hidrográfico y cuenca del Río de la Plata. Anales de la Sociedad Científica Argentina 167: 41–64.

    Google Scholar 

  • Villar C, de Cabo L, Vaithiyanathan P, Bonetto C (1999a) Pore water N and P concentration in a floodplain marsh of the Lower Paraná River. Hydrobiologia 392:65–71.

    Article  CAS  Google Scholar 

  • Villar CA, Stripeikis J, ´DHuicque , Tudino M, Troccoli O, Bonetto C (1999b) Cd, Cu and Zn concentrations in sediments and the invasive bivalves Limnoperma fortunei and Corbicula fluminea at the Río de la Plata basin, Argentina. Hydrobiologia 416:41–49.

    Article  Google Scholar 

  • Villar CA, Bonetto C (2000) Chemistry and nutrient concentrations of the Lower Paraná River and its floodplain marshes during extreme flooding. Arch Hydrobiol 148:461–479.

    CAS  Google Scholar 

  • Wang H, Fu R (2004) Influence of cross-Andes flow on the South American low-level jet. J Climate 17:1247–1262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Depetris, P.J., Pasquini, A.I. (2007). The Geochemistry of the Paranamp;#x00E1; River: An Overview. In: Iriondo, M.H., Paggi, J.C., Parma, M.J. (eds) The Middle Paraná River. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70624-3_6

Download citation

Publish with us

Policies and ethics