Skip to main content

Signal Transduction and Morphogenesis in Candida albicans

  • Chapter
Biology of the Fungal Cell

Part of the book series: The Mycota ((MYCOTA,volume 8))

Abstract

Morphogenetic transitions between budding and filamentous growth forms are thought to contribute to the virulence of Candida albicans. We review the major advances in our understanding of the signal transduction pathways that regulate yeast-hypha morphogenesis in this major fungal pathogen of humans. A diverse range of morphogenetic stimuli are known to promote hyphal growth, including ambient temperatures over 36 C, ambient pH’s above 7.0, serum, glucose, hypoxia, CO2, embedding within a physical matrix and hormones. These regulate morphogenesis via multiple signal transduction pathways that include evolutionarily conserved MAP kinase, cAMP-protein kinase A and calcium signalling modules and an “alternative pathway” that activates hyphal development in response to hypoxia. The transcription factor Efg1 appears to act as a regulatory hub, controlling the activity of many of these pathways. Hyphal development is also subject to negative regulation by the global repressor, Tup1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almirante B, Rodriguez D, Park BJ, Cuenca-Estrella M, Planes AM, Almela M, Mensa J, Sanchez F, Ayats J, Gimenez M, Saballs P, Fridkin SK, Morgan J, Rodriguez-Tudela JL, Warnock DW, Pahissa A (2005) Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surevillance, Barcelona, Spain, from 2002–2003. J Clin Microbiol 43:1829–1835

    PubMed  Google Scholar 

  • Alonso-Monge R, Navarro-García F, Roman E, Negredo AI, Eisman B, Nombela C, Pla J (2003) The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2:351–361

    PubMed  CAS  Google Scholar 

  • Alonso-Monge RA, Román E, Nombela C, Pla J (2006) The MAP kinase signal transduction network in Candida albicans. Microbiology 152:905–912

    Google Scholar 

  • Anderson J, Soll DR (1986) Differences in actin localization in bud and hypha formation in the yeast Candida albicans. J Gen Microbiol 132: 2035–2047

    PubMed  CAS  Google Scholar 

  • Argimón S (2006) Regulation of ALS3 and NRG1 during Candida albicans morphogenesis. PhD thesis, University of Aberdeen

    Google Scholar 

  • Bachewich C, Whiteway M (2005) Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans. Eukaryot Cell 4:95–1102

    PubMed  CAS  Google Scholar 

  • Bader T, Schröppel K, Bentink S, Agabian N, Köhler G, Morschhäuser J (2006) Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun 74:4369

    Google Scholar 

  • Bahn YS, Sundstrom P (2001) CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J Bacteriol 183:3211–3223

    PubMed  CAS  Google Scholar 

  • Bahn YS, Staab J, Sundstrom P (2003) Increased high-affinity phosphodiesterase PDE2 gene expression in germ tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha induction and promotes virulence of Candida albicans. Mol Microbiol 50:391–409

    PubMed  CAS  Google Scholar 

  • Bailey DA, Feldmann PJF, Bovey M, Gow NAR, Brown AJP (1996) The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 178:5353–5360

    PubMed  CAS  Google Scholar 

  • Bassilana M, Arkowitz RA (2006) Rac1 and Cdc42 have different roles in Candida albicans development. Eukaryot Cell 5:321–329

    PubMed  CAS  Google Scholar 

  • Bassilana M, Blyth J, Arkowitz RA (2003) Cdc24, the GDP-GTP exchange factor for Cdc42, is required for invasive hyphal growth of Candida albicans. Eukaryot Cell 2:9–18

    PubMed  CAS  Google Scholar 

  • Bassilana M, Hopkins J, Arkowitz RA (2005) Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth. Eukaryot Cell 4:588–603

    PubMed  CAS  Google Scholar 

  • Beck-Sagué CM, Jarvis WR (1993) National nosocomial infections surveillance system. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. J Infect Dis 167:1247–1251

    PubMed  Google Scholar 

  • Bennett DE, McCreary CE, Coleman DC (1998) Genetic characterization of phospholipase C gene from Candida albicans: presence of homologous species in Candida species other than Candida albicans. Microbiology 144:55–72

    PubMed  CAS  Google Scholar 

  • Bennett RJ, Johnson AD (2003) Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J 22:2505–2515

    PubMed  CAS  Google Scholar 

  • Bennett RJ, Uhl MA, Miller MG, Johnson AD (2003) Identification and characterization of a Candida albicans mating pheromone. Mol Cell Biol 23:8189–8201

    PubMed  CAS  Google Scholar 

  • Bensen ES, Filler SG, Berman J (2002) A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot Cell 1:787–798

    PubMed  CAS  Google Scholar 

  • Bensen ES, Clemente-Blanco A, Finley KR, Correa-Bordes J, Berman J (2005) The mitotic cyclins Clb2p and Clb4p affect morphogenesis in Candida albicans. Mol Biol Cell 16:3387–3400

    PubMed  CAS  Google Scholar 

  • Berman J, Gow NAR (2004) Cell cycle of fungal pathogens. In: San-Blas G, Calderone RA (eds) Pathogenic fungi: structural biology and taxonomy. Caister Academic, Wydmondham, pp 101–127

    Google Scholar 

  • Berman J, Sudbery PE (2002) Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3:918–930

    PubMed  CAS  Google Scholar 

  • Birse CE, Irwin MY, Fonzi WA, Sypherd PS (1993) Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun 61:3648–3655

    PubMed  CAS  Google Scholar 

  • Biswas K, Morschhäuser J (2005) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 56:649–669

    PubMed  CAS  Google Scholar 

  • Blankenship JR, Hietman J (2005) Calcineurin is required for Candida albicans to survive calcium stress in serum. Infect Immun 73:5767–5774

    PubMed  CAS  Google Scholar 

  • Blankenship JR, Wormley FL, Boyce MK, Schell WA, Filler SG, Perfect JR, Heitman J (2003) Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot Cell 2:422–430

    PubMed  CAS  Google Scholar 

  • Bockmühl DP, Ernst JF (2001) A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157:1523–1530

    PubMed  Google Scholar 

  • Bockmühl DP, Krishnamurthy S, Gerads M, Sonneborn A, Ernst JF (2001) Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol Microbiol 42:1243–1257

    PubMed  Google Scholar 

  • Bramley TA, Menzies GS, Williams RJ, Kinsman OS Adams DJ (1991) Binding sites for LH in Candida albicans: comparison with the mammalian corpus luteum LH receptor. J Endocrinol 130:177–190

    PubMed  CAS  Google Scholar 

  • Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109

    PubMed  CAS  Google Scholar 

  • Braun BR, Johnson AD (2000) TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155:57–67

    PubMed  CAS  Google Scholar 

  • Braun BR, Head WS, Wang MX, Johnson, AD (2000) Identification and characterisation of TUP1-regulated genes in Candida albicans. Genetics 156:31–44

    PubMed  CAS  Google Scholar 

  • Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C. albicans, isdown-regulated during filament induction. EMBO J 20:4753–4761

    PubMed  CAS  Google Scholar 

  • Braun BR, Hoog http://genetics.plosjournals.org/perlserv/?request=get-document&doi=10.1371/-aff2 M van het, d’Enfert C, Martchenko M, Dungan J, Kuo A, Inglis DP, Uhl MA, Hogues H, Berriman M, Lorenz M, Levitin A, Oberholzer U, Bachewich C, Harcus D, Marcil A, Dignard D, Iouk T, Zito R, Frangeul L, Tekaia F, Rutherford K, Wang E, Munro CA, Bates S, Gow NAR, Hoyer LL, Köhler G, Morschhäuser J, Newport G, Znaidi S, Raymond M, Turcotte B, Sherlock G, Costanzo M, Ihmels J, Berman J, Sanglard D, Agabian N, Mitchell AP, Johnson AD, Whiteway M, Nantel A (2005) A human-curated annotation of the Candida albicans genome. PLoS Genetics 1:36–57

    PubMed  CAS  Google Scholar 

  • Brega E, Zufferey R, Ben Mamoun C (2004) Candida albicans Csy1p is a nutrient sensor important for activation of amino acid uptake and hyphal morphogenesis. Eukaryot Cell 3:135–143

    PubMed  CAS  Google Scholar 

  • Brown AJP (2002a) Morphogenetic signaling pathways in Candida albicans. In: Calderone RA (ed) Candida and candidiasis. ASM, Washington, D.C., pp 95–106

    Google Scholar 

  • Brown AJP (2002b) Expression of growth form-specific factors during morphogenesis in Candida albicans. In: Calderone RA (ed) Candida and candidiasis. ASM, Washington, D.C., pp 87–93

    Google Scholar 

  • Brown AJP Gow NAR (1999) Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338

    PubMed  CAS  Google Scholar 

  • Brown AJP, Gow NAR (2001) Signal transduction and morphogenesis in Candida albicans. In: Howard RJ, Gow NAR (eds) The Mycota, vol VIII. Biology of the fungal cell, 1st edn. Springer, Berlin Heidelberg New York, pp 55–71

    Google Scholar 

  • Brown AJP, Barelle CJ, Budge S, Duncan J, Harris S, Lee PR, Leng P, Macaskill S, Abdul Murad AM, Ramsdale M, Wiltshire C, Wishart JA, Gow NAR (2000) Gene regulation during morphogenesis in Candida albicans. In: Ernst JF, Schmidt A (eds) Contributions to microbiology: dimorphism in human pathogenic and apathogenic yeasts, vol 5. Karger, Basel, pp 112–125

    Google Scholar 

  • Brown DH, Giusani AD, Chen X, Kumamoto CA (1999) Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34:651–662

    PubMed  CAS  Google Scholar 

  • Buchan ADB, Gow NAR (1991) Rates of germ tube formation from growing and non-growing yeast cells of Candida albicans. FEMS Microbiol Lett 81:15–18

    Google Scholar 

  • Buchan ADB, Kelly VA, Kinsman OS, Gooday GW, Gow NAR (1993) Effect of trfluoperazine on growth, morphogenesis and pathogenicity of Candida albicans. J Med Vet Mycol 31:427–433

    Google Scholar 

  • Buffo J, Herman MA, Soll DR (1984) A characterization of pH regulated dimorphism in Candida albicans. Mycopathologia 86:21–30

    Google Scholar 

  • Cao F, Lane S, Raniga PP, Lu Y, Zhou Z, Ramon K, Chen J, Liu H (2006) The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol Biol Cell 17:295–307

    PubMed  CAS  Google Scholar 

  • Cassola A, Parrot M, Silberstein S, Magee BB, Passeron S, Giasson L, Cantore ML (2004) Candida albicans lacking the gene encoding the regulatory subunit of Protein kinase A displays a defect in hyphal formation and an altered localization of the catalytic subunit. Eukaryot Cell 3:190–199

    PubMed  CAS  Google Scholar 

  • Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci USA 101:5048–5052

    PubMed  CAS  Google Scholar 

  • Chen J, Chen J, Lane S, Liu H (2002) A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol Microbiol 46:1335–1344

    PubMed  CAS  Google Scholar 

  • Clark KL, Feldmann PJF, Dignard D, Larocque R, Brown AJP, Lee MG, Thomas DY, Whiteway M (1995) Constitutive activation of the Saccharomyces cerevisiae mating response pathway by a MAP kinase kinase from Candida albicans. Mol Gen Genet 249:609–621

    PubMed  CAS  Google Scholar 

  • Cognetti D, Davis D, Sturtevant J (2002) The Candida albicans 14-3-3 gene, BMH1, is essential for growth. Yeast 19:55–67

    PubMed  CAS  Google Scholar 

  • Cook JG, Bardwell L, Kron SJ, Thorner J (1996) Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev 10:2831–2848

    PubMed  CAS  Google Scholar 

  • Crampin H, Finley K, Gerami-Nejad M, Court H, Gale C, Berman C (2005) Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J Cell Sci 118:2935–2947

    PubMed  CAS  Google Scholar 

  • Csank C, Makris C, Meloche S, Schroppel K, Rollinghoff M, Dignard D, Thomas DY, Whiteway M (1997) Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol Biol Cell 8:2539–2551

    PubMed  CAS  Google Scholar 

  • Csank C, Schroppel K, Leberer E, Harcus D, Mohamed O, Meloche S, Thomas DY, Whiteway M (1998) Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidosis. Infect Immun 66:2713–2721

    PubMed  CAS  Google Scholar 

  • Cutler JE (1991) Putative virulence factors of Candida albicans. Annu Rev Microbiol 45:187–218

    PubMed  CAS  Google Scholar 

  • Davis D (2003) Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44:1–7

    PubMed  CAS  Google Scholar 

  • Davis D, Wilson RB, Mitchell AP (2000) RIM10-dependent and-independent pathways govern pH responses in Candida albicans. J Bacteriol 20:971–978

    CAS  Google Scholar 

  • De Bernardis F, Muhlschlegel FA, Cassone A, Fonzi WA (1998) The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun 66:3317–3325

    PubMed  Google Scholar 

  • d’Enfert C, Goyard S, Rodriguez-Arnaveilhe S, Frangeul L, Jones L, Tekaia F, Bader O, Castillo L, Dominguez A, Ernst J, Fradin C, Gaillardin C, Garcia-Sanchez S, de Groot P, Hube B, Klis F, Krishnamurthy S, Kunze D, Lopez M-C, Mavor A, Martin N, Moszer I, Onésime D, Perez Martin J, Sentandreu R, Brown AJP (2005) CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res 33:D353–D357

    PubMed  CAS  Google Scholar 

  • Denison SH, Orejas M, Arst HN Jr (1995) Signalling of ambient pH in Aspergillus involves a cysteine protease. J Biol Chem 270:28519–28522

    PubMed  CAS  Google Scholar 

  • Denison SH, Negrete-Urtasun S, Mingot JM, Tilburn J, Mayer WA, Goel A, Espeso EA, Penalva MA, Arst HN Jr (1998) Putative membrane components of signal transduction pathways for ambient pH regulation in Aspergillus and meiosis in Saccharomyces are homologous. Mol Microbiol 30:259–264

    PubMed  CAS  Google Scholar 

  • Dhillon NK, Sharma S, Khuller GK (2003) Biochemical characterization of Ca2+/calmodulin dependent protein kinase from Candida albicans. Mol Cell Biochem 252:183–191

    PubMed  CAS  Google Scholar 

  • Dieterich C, Schandar M, Noll M, Johannes F-J, Brunner H, Graeve T, Rupp S (2002) In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion. Microbiology 148:497–506

    PubMed  CAS  Google Scholar 

  • Doedt T, Krishnamurthy S, Bockmühl DP, Tebarth B, Stempel C, Russell CL, Brown AJP, Ernst JF (2004) APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 15:3167–3180

    PubMed  CAS  Google Scholar 

  • Edgington NP, Blacketter MJ, Bierwagen TA, Myers AM (1999) Control of Saccharomyces cerevisiae filamentous growth by cyclin-dependent kinase Cdc28. Mol Cell Biol 19:1369–1380

    PubMed  CAS  Google Scholar 

  • Edlind T, Smith L, Henry K, Katiyar S, Nickels J (2002) Antifungal activity in Saccharomyces cerevisiae is modulated by calcium signaling. Mol Microbiol 46:257–268

    PubMed  CAS  Google Scholar 

  • El Barkani A, Kurzai O, Fonzi WA, Ramon A, Porta A, Frosch M, Muhlschlegel FA (2000) Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol Cell Biol 20:4635–4647

    PubMed  Google Scholar 

  • Enjalbert B, Whiteway M (2005) Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell 4:1203–1210

    PubMed  CAS  Google Scholar 

  • Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJP, Quinn J (2006) Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17:1018–1032

    PubMed  CAS  Google Scholar 

  • Ernst JF (2000) Transcription factors in Candida albicans — environmental control of morphogenesis. Microbiology 146:1763–1774

    PubMed  CAS  Google Scholar 

  • Feng Q, Summers E, Guo B, Fink G (1999) Ras signalling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol 181:6339–6346

    PubMed  CAS  Google Scholar 

  • Fonzi WA (1999) PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of β-1, 3-and α-1, 6-glucans. J Bacteriol 181:7070–7079

    PubMed  CAS  Google Scholar 

  • Gale CA, Bendel CM, McClellan M, Hauser M, Becker JM, Berman J, Hostetter MK (1998) Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279:1355–1358

    PubMed  CAS  Google Scholar 

  • Gale C, Gerami-Nejad M, McClellan M, Vandoninck S, Longtine MS, Berman J (2001) Candida albicans Int1p interacts with the septin ring in yeast and hyphal cells. Mol Biol Cell 12:3538–3549

    PubMed  CAS  Google Scholar 

  • GarcÍa-Sánchez S, Mavor AL, Russell CL, Argimón S, Dennison P, Enjalbert B, Brown AJP (2005) Global roles of Ssn6 in Tup1-and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol Biol Cell 16:2913–2925

    PubMed  Google Scholar 

  • Ghannoum MA, Spellberg B, Saporito-Irwin SM, Fonzi WA (1995) Reduced virulence of Candida albicans PHR1 mutants. Infect Immun 63:4528–4530

    PubMed  CAS  Google Scholar 

  • Giusani AD, Vinces M, Kumamoto CA (2002) Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics 160:1749–1753

    PubMed  CAS  Google Scholar 

  • Gow NAR (1997) Germ tube growth in Candida albicans. Curr Topics Med Mycol 8:43–55

    CAS  Google Scholar 

  • Gow NAR (2002) Cell biology and cell cycle of Candida. In: Calderone RA (ed) Candida and candidiasis. ASM, Washington, D.C., pp 145–158

    Google Scholar 

  • Gow NAR (2004) New angles in mycology: studies in directional growth and directional motility. Mycol Res 108:5–13

    PubMed  Google Scholar 

  • Gow NAR, Brown AJP, Odds FC (2000) Candida’s arranged marriage. Science 289:256–257

    PubMed  CAS  Google Scholar 

  • Gow NAR, Brown AJP, Odds FC (2002) Fungal morphogenesis and host invasion. Curr Opin Microbiol 5:366–371

    PubMed  CAS  Google Scholar 

  • Guhad FA, Jensen HE, Aalbaek B, Csank C, Mohamed O, Harcus D, Thomas DY, Whiteway M, Hau J (1998) Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidosis. FEMS Microbiol Lett 166:135–139

    PubMed  CAS  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    PubMed  CAS  Google Scholar 

  • Harcus D, Nantel A, Marcil A, Rigby T, Whiteway M (2004) Transcription profiling of cyclic AMP signaling in Candida albicans. Mol Biol Cell 15:4490–4499

    PubMed  CAS  Google Scholar 

  • Hazan I, Liu H (2002) Hyphal tip-associated localization of Cdc42 is F-Actin dependent in Candida albicans. Eukaryot Cell 1:856–864

    PubMed  CAS  Google Scholar 

  • Hogan DA (2006) Molecular analysis of bacterial-fungal interactions within biofilms. Proc Congr Int Soc Human Anim Mycol 16:77

    Google Scholar 

  • Hogan DA, Kolter R (2002) Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296:2229–2232

    PubMed  CAS  Google Scholar 

  • Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223

    PubMed  CAS  Google Scholar 

  • Holmes AR, Cannon RD, Shepherd MG (1991) Effect of calcium ion uptake on Candida albicans morphology. FEMS Microbiol Lett 77:187–194

    CAS  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992

    PubMed  CAS  Google Scholar 

  • Hoyer LL, Cieslinkski LB, McLaughlan MM, Torphy TJ, Shatzman AR, Livi GP (1994) ACandida albicans cyclic nucleotide phosphodiesterase: cloning and expression in Saccharomyces cerevisiae and biochemical characterization of the recombinant enzyme. Microbiology 140:1533–1542

    PubMed  CAS  Google Scholar 

  • Hudson DA, Sciascia QL, Sanders RJ, Norris GE, Edwards PJB, Sullivan PA, Farley PC (2004) Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiology 150:3041–3049

    PubMed  CAS  Google Scholar 

  • Hull CM, Johnson AD (1999) Identification of amating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:1271–1275

    PubMed  CAS  Google Scholar 

  • Hull CM, Raiser RM, Johnson AD (2000) Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307–310

    PubMed  CAS  Google Scholar 

  • Hwang C-S, Oh J-H, Huh W-K, Yim H-S, Kang S-O (2003) Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol Microbiol 47:1029–1043

    PubMed  CAS  Google Scholar 

  • Ishii N, Yamamoto M, Lahm HW, Iizumi S, Yoshihara F, Nakayama H, Arisawa M, Aoki Y (1997a) A DNA binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisiae and the telomeric repeat sequence of Candida albicans. Microbiology 143:417–427

    PubMed  CAS  Google Scholar 

  • Ishii N, Yamamoto M, Yoshihara F, Arisawa M, Aoki Y (1997b) Biochemical and genetic characterisation of Rbf1p, a putative transcription factor of Candida albicans. Microbiology 143:429–435

    PubMed  CAS  Google Scholar 

  • Jamal WY, El-Din K, Rotimi VO, Chugh TD (1999) An analysis of hospital-acquired bacteraemia in intensive care unit patients in a university hospital in Kuwait. J Hosp Infect 43:49–56

    PubMed  CAS  Google Scholar 

  • Janiak AM, Sargsyan H, Russo J, Naider F, Hauser M, Becker JM (2005) Functional expression of the Candida albicans alpha-factor receptor in Saccharomyces cerevisiae. Fungal Genet Biol 42:328–338

    PubMed  CAS  Google Scholar 

  • Johnson AD (2003) The biology of mating in Candida albicans. Nat Rev Microbiol 1:106–116

    PubMed  CAS  Google Scholar 

  • Jung WH, Stateva LI (2003) The cAMP phosphodiesterase encoded by CaPDE2 is required for hyphal development in Candida albicans. Microbiology 149:2961–2976

    PubMed  CAS  Google Scholar 

  • Kadosh D, Johnson AD (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21:2496–2505

    PubMed  CAS  Google Scholar 

  • Kadosh D, Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Cell Biol 16:2903–2912

    CAS  Google Scholar 

  • Kanzaki M, Nagasawa M, Kojima I, Sato C, Naruse K, Sokabe M, Iida H (1999) Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285:882–886

    PubMed  CAS  Google Scholar 

  • Karababa M, Valentino A, Pardini G, Costs AT, Bille J, Sanglard D (2006) CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol 59:1429–1451

    PubMed  CAS  Google Scholar 

  • Kataoka T, Powers S, McGill C, Fasano O, Strathern J, Broach J, Wigler M (1984) Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37:437–445

    PubMed  CAS  Google Scholar 

  • Keleher CA, Redd MJ, Schultz J, Carlson M, Johnson AD (1992) Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719

    PubMed  CAS  Google Scholar 

  • Khalaf RA, Zitomer RS (2001) The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157:1503–1512

    PubMed  CAS  Google Scholar 

  • Kinsman OS, Pitblado K, Coulson CJ (1988) Effect of mammalian steroid hormones and luteinizing hormone on the germination of Candida albicans and implications for vaginal candidosis. Mycoses 31:617–626

    PubMed  CAS  Google Scholar 

  • Klengel T, Liang W-J, Chaloupka J, Ruoff C, Schroppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, Levin LR, Buck J, Muhlschlegel FA (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signalling and virulence. Curr Biol 15:2021–2026

    PubMed  CAS  Google Scholar 

  • Köhler JR, Fink GR (1996) Candida albicans strains heterozygous and homozygous formutations in mitogenactivated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci USA 93:13223–13228

    PubMed  Google Scholar 

  • Kraus PR, Heitman J (2003) Coping with stress: calmodulin and calcineurin in model pathogenic fungi. Biochem Biophys Res Commun 311:1151–1157

    PubMed  CAS  Google Scholar 

  • Kron SJ, Gow NAR (1995) Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle. Curr Opin Cell Biol 7:845–855

    PubMed  CAS  Google Scholar 

  • Kullas AL, Li M, Davis DA (2004) Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Candida albicans. Eukaryot Cell 3:1609–1618

    PubMed  CAS  Google Scholar 

  • Kunze D, Melzer I, Bennett D, Sanglard D, MacCallum DM, Nörskau J, Coleman DC, Odds FC, Schäfer W, Hube B (2005) Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes CaPLC2 and CaPLC3 of Candida albicans. Microbiology 151:3381–3394

    PubMed  CAS  Google Scholar 

  • Kurjan J (1993) The pheromone response pathway in Saccharomyces cerevisiae. Annu Rev Genet 27:147–179

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Bennett JE (1992) Medical mycology. Lea and Febiger, Philadelphia.

    Google Scholar 

  • Lambrechts MG, Bauer FB, Marmur J, Pretorius IS (1996) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci USA 93:8419–8424

    PubMed  CAS  Google Scholar 

  • Lane S, Birse C, Zhou S, Matson R, Liu H (2001a) DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276:48988–48996

    PubMed  CAS  Google Scholar 

  • Lane S, Zhou S, Pan T, Dai Q, Liu H (2001b) The basic helixloop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via Tec1. Mol Cell Biol 21:6418–6428

    PubMed  CAS  Google Scholar 

  • Lazo B, Bates S, Sudbery P (2005) The G1 cyclin Cln3 regulates morphogenesis in Candida albicans. Eukaryot Cell 4:90–94

    Google Scholar 

  • Leberer E, Harcus D, Broadbent ID, Clark KL, Dignard D, Ziegelbauer K, Schmit A, Gow NAR, Brown AJP, Thomas DY (1996) Homologs of the Ste20p and Ste7p protein kinases are involved in hyphal formation of Candida albicans. Proc Natl Acad Sci USA 93:13217–13222

    PubMed  CAS  Google Scholar 

  • Leberer E, Ziegelbauer K, Schmidt A, Harcus D, Dignard D, Ash J, Johnson L, Thomas DY (1997) Virulence and hyphal formation of Candida albicans require the Ste20plike protein kinase CaCla4p. Curr Biol 7:539–546

    PubMed  CAS  Google Scholar 

  • Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, Thomas DY, Schroppel K (2001) Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol Microbiol 42:673–687

    PubMed  CAS  Google Scholar 

  • Lee KL, Buckler HR, Campbell CC. (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13:148–153

    PubMed  CAS  Google Scholar 

  • Leng P, Sudbery PE, Brown AJP (2000) Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen, Candida albicans. Mol Microbiol 35:1264–1275

    PubMed  CAS  Google Scholar 

  • Leng P, Lee PR, Wu H, Brown AJP (2001) Efg1, a morphogenetic regulator in Candida albicans, is a sequencespecific DNA binding protein. J Bacteriol 183:4090–4093

    PubMed  CAS  Google Scholar 

  • Lever M, Robertson B, Buchan ADB, Gooday GW, Gow NAR (1994) pH and Ca2+ dependent galvanotropism of filamentous fungi: implications and mechanisms. Mycol Res 98:301–306

    Google Scholar 

  • Lew DJ, Reed SI (1993) Morphogenesis in yeast cell cycle: regulation by Cdc28 and cyclins. J Cell Biol 120:1305–1320

    PubMed  CAS  Google Scholar 

  • Lew DJ, Reed SI (1995) A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J Cell Biol 129:739–749

    PubMed  CAS  Google Scholar 

  • Li M, Martin SJ, Bruno VM, Mitchell AP, Davis DA (2004) Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryotic Cell 3:741–751

    PubMed  CAS  Google Scholar 

  • Liu H (2001) Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4:728–735

    PubMed  CAS  Google Scholar 

  • Liu H, Styles CA, Fink GR (1993) Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262:1741–1744

    PubMed  CAS  Google Scholar 

  • Liu H, Köhler JR, Fink GR (1994) Suppression of hyphal formation in Candida albicans bymutation of a STE12 homolog. Science 266:1723–1726

    PubMed  CAS  Google Scholar 

  • Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    PubMed  CAS  Google Scholar 

  • Lo WS, Dranginis AM (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Cell Biol 9:161–171

    CAS  Google Scholar 

  • Loeb JDJ, Sepulveda-Becerra A, Hazan I, Liu H (1999) A G1 cyclin is necessary for maintenance of filamentous growth in Candida albicans. Mol Cell Biol 19:4019–4027

    PubMed  CAS  Google Scholar 

  • Lorenz MC, Heitman J (1997) Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J 16:7008–7018

    PubMed  CAS  Google Scholar 

  • Madhani HD, Fink GR (1997) Combinatorial control required for the specificity of yeast MAPK signaling. Science 275:1314–1317

    PubMed  CAS  Google Scholar 

  • Magee BB, Magee PT (2000) Induction ofmating in Candida albicans by construction of MTLa and MTLα strains. Science 289:310–313

    PubMed  CAS  Google Scholar 

  • Magee BB, Legrand M, Alarco A-M, Raymond M, Magee PT (2002) Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol Microbiol 46:1345–1351

    PubMed  CAS  Google Scholar 

  • Magee PT (1998) Analysis of the Candida albicans genome. In: Brown AJP Tuite MF (eds) Yeast gene analysis. (Methods in microbiology, vol 26) Academic, New York, pp 395–415

    Google Scholar 

  • Maidan MM, Thevelein JM, Van Dijk P (2005) Carbon source induced yeast-to-hyphae transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochem Soc Trans 33:291–293

    PubMed  CAS  Google Scholar 

  • Malloy PJ, Zhao X, Madani ND, Feldman D (1993) Cloning and expession of the gene from Candida albicans that encodes ahigh-affinity corticosteroid-binding protein. Proc Natl Acad Sci USA 90:1902–1906

    PubMed  CAS  Google Scholar 

  • Martin MV, Craig GT, Lamb DJ (1984) An investigation of the role of true hypha production in the pathogenesis of experimental candidosis. J Med Vet Mycol 22:471–476

    CAS  Google Scholar 

  • Martin SW, Douglas LM, Konopka JB (2005) Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. Eukaryot Cell 4:1191–1202

    PubMed  CAS  Google Scholar 

  • Martínez P, Ljungdahl PO (2004) An ER packaging chaperone determines the amino acid uptake capacity and virulence of Candida albicans. Mol Microbiol 51:371–384

    PubMed  Google Scholar 

  • Mattia E, Carruba G, Angiolella L, Cassone A (1982) Induction of germ tube formation by N-acetyl-Dglucosamine in Candida albicans: uptake of inducer and germinative response. J Bacteriol 152:555–562

    PubMed  CAS  Google Scholar 

  • Merson-Davies LA, Odds FC (1989) A morphology index for characterization of cell shape in Candida albicans. J Gen Microbiol 135:3143–3152

    PubMed  CAS  Google Scholar 

  • Miller MG, Johnson AD (2002) White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293–302

    PubMed  CAS  Google Scholar 

  • Mingot JM, Tilburn J, Diez E, Bignell E, Orejas M, Widick DA, Sarkar S, Brown CV, Caddick MX, Espeso EA, Arst Jr HN, Penalva MA (1999) Specificity determinants of proteolytic processing of Aspergillus PacC transcription factor are remote from the processing site, and processing occurs in yeast if pH signalling is bypassed. Mol Cell Biol 19:1390–1400

    PubMed  CAS  Google Scholar 

  • Mirbod F, Nakashima S, Kitajima Y, Cannon RD, Nozawa Y (1997) Molecular cloning of a Rho family, CDC42Ca gene from Candida albicans and its mRNA expression changes during morphogenesis. J Med Vet Mycol 35:173–179

    PubMed  CAS  Google Scholar 

  • Miwa T, Takagi Y, Shinozaki M, Yun C-W, Schell WA, Perfect JR, Kumagai H, Tamaki H (2004) Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot Cell 3:919–931

    PubMed  CAS  Google Scholar 

  • Mock RC, Pollack JH, Hashimoto T (1990) Carbon dioxide induces endotrophic germ tube formation in Candida albicans. Can J Microbiol 36:249–253

    PubMed  CAS  Google Scholar 

  • Mogensen EG, Janbon G, Chaloupka J, Steegborn C, Fu MS, Moyrand F, Klengel T, Pearson DS, Geeves MA, Buck J, Levin LR, Mühlschlegel FA (2006) Cryptococcus neoformans sensesCO2 throughthe carbonic anhydrase Can2 and the adenylyl cyclase Cac1. Eukaryot Cell 5:103–111

    PubMed  CAS  Google Scholar 

  • Monge RA, Navarro-Garcia F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sanchez M, Nombela C (1999) Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181:3058–3068

    Google Scholar 

  • Mosch HU, Roberts RL, Fink GR (1996) Ras2 signals via the Cdc42/Ste20/mitogen-activatedprotein kinasemodule to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5352–5356

    PubMed  CAS  Google Scholar 

  • Mosel DD, Dumitru R, Hornby JM, Atkin AL, Nickerson KW (2005) Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Applied Environ Microbiol 71:4938–4940

    CAS  Google Scholar 

  • Muhlschlegel FA, Fonzi WA (1997) PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of expression. Mol Cell Biol 17:5960–5967

    PubMed  CAS  Google Scholar 

  • Murad AMA, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia F, d’Enfert C, Gaillardin C, Odds FC, Brown AJP (2001a) NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752

    PubMed  CAS  Google Scholar 

  • Murad AMA, d’Enfert C, Gaillardin C, Tournu H, Tekaia F, Talibi D, Merechal D, Marchais V, Cottin J, Brown AJP (2001b) Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol Microbiol 42:981–993

    PubMed  CAS  Google Scholar 

  • Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin A-P, Sensen CW, Hogues H, Hoog M van het, Gordon P, Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M (2002) Transcript profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–2365

    PubMed  CAS  Google Scholar 

  • Navarro-GarcÍa F, Alonso-Monge R, Rico H, Pla J, Sentandreu R, Nombela C (1998) A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 144:411–424

    PubMed  Google Scholar 

  • Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155

    PubMed  CAS  Google Scholar 

  • Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathogen 2:636–649

    CAS  Google Scholar 

  • Odds FC (1988) Candida and candidosis, 2nd edn. Bailliere Tindall, London

    Google Scholar 

  • Paidhungat M, Garrett, S (1997) A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol 17:6339–6347

    PubMed  CAS  Google Scholar 

  • Palmer GE, Johnson KJ, Ghosh S, Sturtevant J (2004) Mutant alleles of the essential 14-3-3 gene in Candida albicans distinguish between growth and filamentation. Microbiology 150:1911–1924

    PubMed  CAS  Google Scholar 

  • Paranjape V, Roy BG, Datta A (1990) Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis of Candida albicans. J Gen Microbiol 136:2119–2154

    Google Scholar 

  • Paravicini G, Medoza A, Antonsson B, Cooper M, Losberger C, Payton MA (1996) The Candida albicans PKC1 gene encodes a protein kinase C homolog necessary for cellular integrity but not dimorphism. Yeast 30:741–756

    Google Scholar 

  • Park SH, Koh SS, Chun JH, Hwang HJ, Kang HS (1999) Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19:2044–2050

    PubMed  CAS  Google Scholar 

  • Porta A, Ramon AM, Fonzi WA (1999) PRR1, a homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol 181:7516–7523

    PubMed  CAS  Google Scholar 

  • Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Env Microbiol 68:5459–5463

    CAS  Google Scholar 

  • Ramon AM, Porta A, Fonzi WA (1999) Effect of environmental pH on morphological development of Candida albicans ismediated via the PacC-regulated transcriptionfactor encoded by PRR2. JBacteriol 181:7524–7530

    CAS  Google Scholar 

  • Riggle PJ, Andrutis KA, Chen X, Tzipori SR, Kumamoto CA (1999) Invasion lesions containing filamentous forms produced by a Candida albicans mutant that is defective in filamentous growth in culture. Infect Immun 67:3649–3652

    PubMed  CAS  Google Scholar 

  • Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8:2974–2985

    PubMed  CAS  Google Scholar 

  • Roberts RL, Mosch HU, Fink GR (1997) 14-3-3 proteins are essential for RAS/MAPK cascade signalling during pseudohyphal development in S. cerevisiae. Cell 89:1055–1065

    PubMed  CAS  Google Scholar 

  • Rocha CR, Schroppel K, Harcus D, Marcil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E (2001) Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12:3631–3643

    PubMed  CAS  Google Scholar 

  • Roy BG, Datta A (1987) A calmodulin inhibitor blocks morphogenesis in Candida albicans. FEMS Microbiol Lett 41:327–329

    CAS  Google Scholar 

  • Rupp S, Summers E, Lo HJ, Madhani H, Fink GR (1999) MAP kinase and cAMP filamentous signalling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269

    PubMed  CAS  Google Scholar 

  • Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1500

    PubMed  CAS  Google Scholar 

  • Russell CL, Brown AJP (2005) Expression of one-hybrid fusionswith Staphylococcus aureus lexA in Candida albicans confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genet Biol 42:676–683

    PubMed  CAS  Google Scholar 

  • Ryley JF, Ryley NG (1990) Candida albicans — do mycelia matter? J Med Vet Mycol 28:225–239

    PubMed  CAS  Google Scholar 

  • Sabie FT, Gadd GM (1989) Involvement of a Ca2+-calmodulin interaction in the yeast-mycelial (Y-M) transition of Candida albicans. Mycopathologia 198:47–54

    Google Scholar 

  • Sánchez-MartÍnez C, Pérez-MartÍn J (2002) Gpa2, a Gprotein α subunit required for hyphal development in Candida albicans. Eukaryot Cell 1:865–874

    PubMed  Google Scholar 

  • Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J (2003) Calcineurin A of Candida albicans: involvement of antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 48:959–976

    PubMed  CAS  Google Scholar 

  • Santos M, Larrinoa IF de (2005) Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor. Curr Genet 48:88–100

    PubMed  CAS  Google Scholar 

  • Santos MAS, Keith G, Tuite MF (1993) Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5′-CAG-3′ (leucine) anticodon. EMBO J 12:607–616

    PubMed  CAS  Google Scholar 

  • Saporito SM, Sypherd PS (1991) The isolation and characterization of a calmodulin-encoding gene (CMD1) from the dimorphic fungus Candida albicans. Gene 106:43–49

    PubMed  CAS  Google Scholar 

  • Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613

    PubMed  CAS  Google Scholar 

  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060

    PubMed  CAS  Google Scholar 

  • Schröppel K, Sprößer K, Whiteway M, Thomas DY, Röllinghoff M, Csank C (2000) Repression of hyphal proteinase expression by the mitogen-activated protein (MAP) kinase phosphatase Cpp1p of Candida albicans is independent of the MAP kinase Cek1p. Infect Immun 68:7159–7161

    PubMed  Google Scholar 

  • Schweizer A, Rupp S, Taylor BN, Rollinghoff M, Schröppel K ((2000) The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol Microbiol 38:435–445

    PubMed  CAS  Google Scholar 

  • Seth CC, Johnson E, Baker ME, Haynes K, Mühlschlegel FA (2005) Phenotypic identification of Candida albicans by growth on chocolate agar. Med Mycol 43:735–738

    Google Scholar 

  • Sevilla M-J, Odds FC (1986) Development of Candida albicans hyphae in different growth media-variation in growth rates, cell dimensions and timing of morphological events. J Gen Microbiol 132:3083–3088

    PubMed  CAS  Google Scholar 

  • Sharkey LL, McNemar MD, Saporito-Irwin SM, Sypherd PS, Fonzi WA (1999) HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1 and RBF1. J Bacteriol 181:5273–5279

    PubMed  CAS  Google Scholar 

  • Sharma S, Kaur H, Khuller GR (2001) Cell cycle effects of the phenothiazines: trifluoperazine and the chlorpromazine in Candida albicans. FEMSMicrobiol Lett 199:185–190

    CAS  Google Scholar 

  • Shepherd MG (1985) Pathogenicity of morphological and auxotrophic mutants of Candida albicans in experimental infections. Infect Immun 50:541–544

    PubMed  CAS  Google Scholar 

  • Sherwood J, Gow NAR, Gooday GW, Gregory DW, Marshall D (1992) Contact sensing in Candida albicans: a possible aid to epithelial penetration. J Med Vet Mycol 30:461–469

    PubMed  CAS  Google Scholar 

  • Smith DA, Nicholls S, Morgan BA, Brown AJP, Quinn J (2004) A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15:4179–4190

    PubMed  CAS  Google Scholar 

  • Smith RL, Johnson AD (2000) Turning off genes by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325–330

    PubMed  CAS  Google Scholar 

  • Sobel JD, Muller G, Buckley HR (1984) Critical role of germ tube formation in the pathogenesis of Candida vaginitis. Infect Immun 44:576–580

    PubMed  CAS  Google Scholar 

  • Sohn K, Urban C, Brunner H, Rupp S (2003) EFG1 is amajor regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol 47:89–102

    PubMed  CAS  Google Scholar 

  • Soll DR (1986) The regulation of cellular differentiation in the dimorphic yeast Candida albicans. BioEssays 5:5–11

    PubMed  CAS  Google Scholar 

  • Sonneborn A, Bockmuhl DP, Ernst JF (1999) Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun 67:5514–5517

    PubMed  CAS  Google Scholar 

  • Sonneborn A, Bockmuhl DP, Gerads M, Kurpanek K, Sanglard D, Ernst JF (2000) Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol Microbiol 35:386–396

    PubMed  CAS  Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    PubMed  CAS  Google Scholar 

  • Staab JF, Bahn Y-S, Sundstrom P (2003) Integrative, multifunctional plasmids for hypha-specific or constitutive expression of green fluorescent protein in Candida albicans. Microbiology 149:2977–2986

    PubMed  CAS  Google Scholar 

  • Staebell M, Soll DR (1985) Temporal and spatial differences in cell wall expansion during bud and mycelium formation in Candida albicans. J Gen Microbiol 131:1079–1087

    Google Scholar 

  • Staib P, Morschhauser J (2005) Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis. Mol Microbiol 55:637–652

    PubMed  CAS  Google Scholar 

  • Stewart E, Gow NAR, Bowen DV (1988) Cytoplasmic alkalinization during germ tube formation in Candida albicans. J Gen Microbiol 134:1079–1087

    PubMed  CAS  Google Scholar 

  • Stewart ES, Hawser S, Gow NAR (1989) Changes in internal and external pH accompanying growth of Candida albicans: studies of non-dimorphic variants. Arch Microbiol 151:149–153

    PubMed  CAS  Google Scholar 

  • Stoldt VR, Sonneborn A, Leuker C, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogenCandida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1997

    PubMed  CAS  Google Scholar 

  • Strathopoulos AM, Cyert MS (1997) Calcineurin acts through the CRZ1/ TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11:3432–3444

    Google Scholar 

  • Strathopolouos-Gerontides A, Guo JJ, Cyert MS (1999) Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation. Genes Dev 13:798–803

    Google Scholar 

  • Su Z, Osborne MJ, Xu P, Xu X, Li Y, Ni F (2005) A bivalent dissectional analysis of the high-affinity interactions between Cdc42 and the Cdc42/Rac interactive binding domains of signaling kinases in Candida albicans. Biochemistry 44:16461–16474

    PubMed  CAS  Google Scholar 

  • Sudbery PE (2001) The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localisation. Mol Microbiol 41:19–31

    PubMed  CAS  Google Scholar 

  • Sudbery P, Gow NAR, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–325

    PubMed  CAS  Google Scholar 

  • Sundstrom P, Cutler JE, Staab JF (2002) Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectablemarker URA3 targeted to the ENO1 locus. Infect Immun 70:3281–3283

    PubMed  CAS  Google Scholar 

  • Swoboda RK, Bertram G, Delbruck S, Ernst JF, Gow NAR, Gooday GW, Brown AJP (1994) Fluctuations in glycolytic mRNA levels during the yeast-to-hyphal transition in Candida albicans reflect underlying changes in growth rather than a response to cellular dimorphism. Mol Microbiol 13:663–672

    PubMed  CAS  Google Scholar 

  • Tebarth B, Doedt T, Krishnamurthy S, Weide M, Monterola F, Dominguez A, Ernst JF (2003) Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKA-dependent repression of the EFG1 gene. J Mol Biol 329:949–962

    PubMed  CAS  Google Scholar 

  • Torosantucci A, Angiolella L, Caccone A (1984) Antimorphogenetic effcts of 2-deoxy-D-glucose in Candida albicans. FEMS Microbiol Lett 24:335–339

    CAS  Google Scholar 

  • Tortorano AM, Peman J, Bernhardt H, Klingspor L, Kibbler CC, Faure O, Biraghi E, Canton E, Zimmermann K, Seaton S, Grillot R (2004) Epidemiology of candidaemia in Europe: results of 28-month European Confederation of Medical Mycology (ECMM) hospital-based surveillance study. Eur J Clin Microbiol Infect Dis 23:317–322

    PubMed  CAS  Google Scholar 

  • Tournu H, Tripathi G, Bertram G, Macaskill S, Mavor A, Walker L, Odds FC, Gow NAR, Brown AJP (2005) Global role of the protein kinase, Gcn2, in the human pathogen, Candida albicans. Eukaryot Cell 4:1687–1696

    PubMed  CAS  Google Scholar 

  • Tripathi G, Wiltshire C, Macaskill S, Tournu H, Budge S, Brown AJP (2002) CaGcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J 21:5448–5456

    PubMed  CAS  Google Scholar 

  • Ushinsky SC, Harcus D, Ash J, Dignard D, Marcil A, Morchhauser J, Thomas DY, Whiteway M, Leberer E (2002) CDC42 is required for polarized growth in human pathogen Candida albicans. Eukaryot Cell 1:95–104

    PubMed  CAS  Google Scholar 

  • van den Berg AL, Ibrahim AS, Edwards JE, Toenjes KA, Johnson DI (2004) Cdc42p GTPase regulates the budded-to-hyphal-form transition and expression of hypha-specific transcripts in Candida albicans. Eukaryot Cell 3:724–734

    Google Scholar 

  • Vinces MD, Haas C, Kumamoto CA (2006) Expression of the Candida albicans morphogenesis regulator gene CZF1 and its regulation by Efg1p and Czf1p. Eukaryot Cell 5:825–835

    PubMed  CAS  Google Scholar 

  • Virag A, Harris SD (2006) The Spitzenköpper: a molecular perspective. Mycol Res 110:4–13

    PubMed  CAS  Google Scholar 

  • Vyas VK, Kuchin S, Carlson M (2001) Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158:563–572

    PubMed  CAS  Google Scholar 

  • Vyas VK, Kuchin S, Berkey CD, Carlson M (2003) Snf1 kinases with different β-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol Cell Biol 23:1341–1348

    PubMed  CAS  Google Scholar 

  • Watts HJ, Very AA, Perera THS, Davies JM, Gow NAR (1998) Thigmotropism and stretch activated channels in the pathogenic fungus Candida albicans. Microbiology 144:689–695

    PubMed  CAS  Google Scholar 

  • Whiteway M (2000) Transcriptional control of cell type and morphogenesis in Candida albicans. Curr Opin Microbiol 3:582–588

    PubMed  CAS  Google Scholar 

  • Whiteway M, Dignard D, Thomas DY (1992) Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest. Proc Natl Acad Sci USA 89:9410–9414

    PubMed  CAS  Google Scholar 

  • Wightman R, Bates S, Amornrrattanapan P, Sudbery P (2004) In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J Cell Biol 164:581–591

    PubMed  CAS  Google Scholar 

  • Williams RJ, Dickinson K, Kinsman OS, Bramley TA, Menzies GS, Adams DJ (1990) Receptor-mediated elevation of adenylate cyclase by luteinizinghormone in Candida albicans. J Gen Microbiol 136:2143–2148

    PubMed  CAS  Google Scholar 

  • Wilson RB, Davis D, Mitchell AP (1999) Rapid hypothesis testingwith Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874

    PubMed  CAS  Google Scholar 

  • Zhao X, Malloy PJ, Ardies CM, Feldman D (1995) Oestrogen-binding protein in Candida albicans: antibody development and cellular localization by electron immunocytochemistry. Microbiology 141:2685–2692

    PubMed  CAS  Google Scholar 

  • Zhao X, Oh S-H, Cheng G, Green CB, Nuessen JA, Yeater K, Leng RP, Brown AJP, Hoyer LL (2004) ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 150:2415–2428

    PubMed  CAS  Google Scholar 

  • Zheng X, Wang Y, Wang Y (2004) Hgc1, a novel hyphaspecific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBOJ 23:1845–1856

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, A.J.P., Argimón, S., Gow, N.A.R. (2007). Signal Transduction and Morphogenesis in Candida albicans . In: Howard, R.J., Gow, N.A.R. (eds) Biology of the Fungal Cell. The Mycota, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70618-2_7

Download citation

Publish with us

Policies and ethics