Skip to main content

The Cytoskeleton and Polarized Growth of Filamentous Fungi

  • Chapter
Biology of the Fungal Cell

Part of the book series: The Mycota ((MYCOTA,volume 8))

Abstract

Polarized growth is the mechanism by which filamentous fungi extend their hyphae. Microtubules (MT) and filamentous actin (F-actin), in combination with their corresponding motor proteins, kinesin, dynein and myosin, play important roles in this process. Actin has an essential role for tip elongation and septation. It is required for vesicle secretion and cell wall extension, and possibly - together with the MT cytoskeleton - for the localization of so-called cell end marker or landmark proteins, which control growth directionality. The exact contribution of the MT cytoskeleton on polarized growth is less clear. Genetic, biochemical and cell biological approaches in Aspergillus nidulans and other fungi led to a modified view of many MT-related aspects within the past few years. There is increasing evidence that MT cables, which are visualized by immunostaining or GFP-tubulin fusion proteins, consist of several MTs and their dynamics appears to be different in fast-growing hyphal tips as compared with young germlings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adio S, Reth J, Bathe F, Woehlke G (2006) Regulation mechanisms of Kinesin-1. J Muscle Res Cell Motil 27:153–160

    PubMed  CAS  Google Scholar 

  • Akhmanova A, Hoogenraad CC (2005) Microtubule plusend-tracking proteins: mechanisms and functions. Curr Opin Cell Biol 17:47–54

    PubMed  CAS  Google Scholar 

  • Al-Bassam J, Breugel M van, Harrison SC, Hyman A (2006) Stu2p binds tubulin and undergoes an open-to-closed conformational change. J Cell Biol 172:1009–1022

    PubMed  CAS  Google Scholar 

  • Aldaz H, Rice LM, Stearns T, Agard DA (2005) Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature 435:523–527

    PubMed  CAS  Google Scholar 

  • Baas PW, Qiang L (2005) Neuronal microtubules: when the MAP is the roadblock. Trends Cell Biol 15:183–187

    PubMed  CAS  Google Scholar 

  • Baas PW, Pienkowski TP, Cimbalnik KA, Toyama K, Bakalis S, Ahmad FJ, Kosik KS (1994) Tau confers drug stability but not cold stability to microtubules in living cells. J Cell Sci 107:135–143

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S, Bartnicki DD, Gierz G, Lopez-Franco R, Bracker CE (1995) Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp Mycol 19:153–159

    PubMed  CAS  Google Scholar 

  • Bathnagar RS, Gordon JI (1997) Understanding covalent modifications of lipids: where cell biology and biophysics mingle. J Cell Biol 7:14–20

    Google Scholar 

  • Bourett TM, Czymmek KJ, Howard RJ (1998) An improved method for affinity probe localization in whole cells of filamentous fungi. Fungal Genet Biol 24:3–13

    PubMed  CAS  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2001) The CDC42 homolog of the dimorphic fungus Penicillium marneffei is required for correct cell polarization during growth but not developmen. J Bacteriol 183:3447–3457

    PubMed  CAS  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2003) Control of morphogenesis and actin localiztion by the Penicillium marneffei Rac homolog. J Cell Sci 116:1249–1260

    PubMed  CAS  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2005) The Ras and Rho GTPases genetically interact to co-ordinately regulate cell polarity during development in Penicillium marneffei. Mol Microbiol 55:1487–1501

    PubMed  CAS  Google Scholar 

  • Bretscher A (2003) Polarized growth and organelle segregation in yeast: the tracks, motors and receptors. J Cell Biol 160:811–816

    PubMed  CAS  Google Scholar 

  • Bretscher A (2005) Microtubule tips redirect actin assembly. Dev Cell 8:458–459

    PubMed  CAS  Google Scholar 

  • Browning H, Hayles J, Mata J, Aveline L, Nurse P, McIntosh JR (2000) Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. J Cell Biol 151:15–27

    PubMed  CAS  Google Scholar 

  • Browning H, Hackney DD, Nurse P (2003) Targeted movement of cell end factors in fission yeast. Nat Cell Biol 5:812–818

    PubMed  CAS  Google Scholar 

  • Brunswick H (1924) Untersuchungen über die Geschlechtsund Kernverhältnisse bei der Hymenomyzetengattung Corpinus. Fisher, Jena

    Google Scholar 

  • Busch KE, Hayles J, Nurse P, Brunner D (2004) Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev Cell 16:831–843

    Google Scholar 

  • Carazo-Salas R, Antony C, Nurse P (2005) The kinesin Klp2 mediates polarization of interphase microtubules in fission yeast. Science 309:297–300

    PubMed  CAS  Google Scholar 

  • Carminati JL, Stearns T (1997) Microbutules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol 138:629–641

    PubMed  CAS  Google Scholar 

  • Carvalho P, Gupta MLJ, Hoyt MA, Pellman D (2004) Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev Cell 6:815–829

    PubMed  CAS  Google Scholar 

  • Cassimeris L, Spittle C (2001) Regulation of microtubule-associated proteins. Int Rev Cytol 210:163–226

    PubMed  CAS  Google Scholar 

  • Crampin H, Finley K, Gerami-Nejad M, Court H, Gale C, Berman J, Sudbery P (2005) Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J Cell Sci 118:2935–2947

    PubMed  CAS  Google Scholar 

  • Czymmek KJ, Bourett TM, Howard RJ (1996) Immunolocalization of tubulin and actin in thick-sectioned fungal hyphae after freeze-substitution fixation and methacrylate de-embedment. J Microsc 181:153–161

    CAS  Google Scholar 

  • Czymmek KJ, Bourett TM, Shao Y, DeZwaan TM, Sweigard JA, Howard RJ (2005) Live-cell imaging of tubulin in the filamentous fungus Magnaporthe grisea treated with anti-microtubule and anti-microfilament agents. Protoplasma 225:23–32

    PubMed  CAS  Google Scholar 

  • Ding DQ, Chikashige Y, Haraguchi T, Hiraoka Y (1998) Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J Cell Sci 111:701–712

    PubMed  CAS  Google Scholar 

  • Doxsey SJ, McCollum D, Theurkauf W (2005) Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 21:411–434

    PubMed  CAS  Google Scholar 

  • Efimov V, Zhang J, Xiang X (2006) CLIP-170 homologue and NUDE play overlapping roles in NUDF localization in Aspergillus nidulans. Mol Biol Cell 17:2021–2034

    PubMed  CAS  Google Scholar 

  • Enos AP, Morris NR (1990) Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60:1019–1027

    PubMed  CAS  Google Scholar 

  • Eshel D, Urrestarazu LA, Vissers S, Jauniaux JC, Van Vliet-Reedijk JC, Planta RJ, Gibbons IR (1993) Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proc Natl Acad Sci USA 90:11172–11176

    PubMed  CAS  Google Scholar 

  • Fagarasanu A, Fagarasanu M, Eitzen GZ, Aitchison JD, Rachubinski RA (2006) The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae. Dev Cell 10:587–600

    PubMed  CAS  Google Scholar 

  • Fischer R, Timberlake WE (1995) Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein necessary for nuclear positioning and completion of asexual development. J Cell Biol 128:485–498

    PubMed  CAS  Google Scholar 

  • Freitag M, Hickey PC, Raju NB, Selker EU, Read ND (2004) GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 41:897–910

    PubMed  CAS  Google Scholar 

  • Fuchs F, Westermann B (2005) Role of Unc104/KIF1-related motor proteins in mitochondrial transport in Neurospora crassa. Mol Biol Cell 16:153–161

    PubMed  CAS  Google Scholar 

  • Fuchs F, Prokisch H, Neupert W, Westermann B (2002) Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. JCell Sci 115:1931–1937

    CAS  Google Scholar 

  • Girbardt M (1957) Der Spitzenkörper von Polystictus versicolor. Planta 50:47–59

    Google Scholar 

  • Grossmann G, Opekarova M, Novakova L, Stolz J, Tanner W (2006) Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae. Eukaryot Cell 5:945–953

    PubMed  CAS  Google Scholar 

  • Guest GM, Lin X, Momany M (2004) Aspergillus nidulans RhoA is involved in polar growth, branching, and cell wall synthesis. Fungal Genet Biol 41:13–22

    PubMed  CAS  Google Scholar 

  • Hagan IM (1998) The fission yeast microtubule cytoskeleton. J Cell Sci 111:1603–1612

    PubMed  CAS  Google Scholar 

  • Han G, Liu B, Zhang J, Zuo W, Morris NR, Xiang X (2001) The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr Biol 11:19–24

    Google Scholar 

  • Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7:456–462

    PubMed  CAS  Google Scholar 

  • Harris SD, Momany M (2004) Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol 41:391–400

    PubMed  CAS  Google Scholar 

  • Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M (2005) Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 4:225–229

    PubMed  CAS  Google Scholar 

  • Heath IB (1981) Nucleus-associated organelles in fungi. Int Rev Cytol 69:191–221

    Google Scholar 

  • Hestermann A, Rehberg M, Gräf R (2002) Centrosomal microtubule plus end tracking proteins and their role in Dictyostelium cell dynamics. J Muscle Res Cell Motil23:621–630

    PubMed  CAS  Google Scholar 

  • Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    PubMed  CAS  Google Scholar 

  • Hoepfner D, Brachat A, Philippsen P (2000) Time-lapse video microscopy analysis reveals astral microtubule detachment in the yeast spindle pole mutant cnm67 v. Mol Biol Cell 11:1197–1211

    PubMed  CAS  Google Scholar 

  • Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926

    PubMed  CAS  Google Scholar 

  • Horiuchi H, Jujiwara M, Yamashita S, Ohta A, Takagi M (1999) Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. J Bacteriol 181:3721–3729

    PubMed  CAS  Google Scholar 

  • Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422:753–758

    PubMed  CAS  Google Scholar 

  • Jaspersen SL, Winey M (2004) The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol 20:1–28

    PubMed  CAS  Google Scholar 

  • Job D, Valiron O, Oakley BR (2003) Microtubule nucleation. Curr Opin Cell Biol 15:111–117

    PubMed  CAS  Google Scholar 

  • Jung MK, May GS, Oakley BR (1998) Mitosis in wild-type and β-tubulin mutant strains of Aspergillus nidulans. Fungal Genet Biol 24:146–160

    PubMed  CAS  Google Scholar 

  • Kapitein LC, Peterman EJ, Kwok BH, Kim JH, Kapoor TM, Schmidt CF (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–118

    PubMed  CAS  Google Scholar 

  • Knechtle P, Dietrich F, Philippsen P (2003) Maximal polar growth potential depends on the polarisome componentAgSpa2 in the filamentous fungus Ashbya gossypii. Mol Biol Cell 14:4140–4154

    PubMed  CAS  Google Scholar 

  • Konzack S, Rischitor P, Enke C, Fischer R (2005) The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 16:497–506

    PubMed  CAS  Google Scholar 

  • Lehmler C, Steinberg G, Snetselaar KM, Schliwa M, Kahmann R, Bölker M (1997) Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J 16:3464–3473

    PubMed  CAS  Google Scholar 

  • Li S, Du L, Yuen G, Harris SD (2006) Distinct ceramide synthases regulate polarized growth in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 17:1218–1227

    PubMed  CAS  Google Scholar 

  • Maekawa H, Schiebel E (2004) Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes Dev 18:1709–1724

    PubMed  CAS  Google Scholar 

  • Maekawa H, Usui T, Knop M, Schiebel E (2003) Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate but cortex interactions. EMBO J 22:438–449

    PubMed  CAS  Google Scholar 

  • Martin R, Walther A, Wendland J (2004) Deletion of the dynein heavy-chain gene DYN1 leads to aberrant nuclear positioning and defective hyphal development in Candida albicans. Eukaryot Cell 3:1574–1588

    PubMed  CAS  Google Scholar 

  • Martin SG, Chang F (2003) Cell polarity: a new mod(e) of anchoring. Curr Biol 13:R711–R730

    PubMed  CAS  Google Scholar 

  • Martin SG, Chang F (2005) New end take off: regulating cell polarity during the fission yeast cell cycle. Cell Cycle 4:1046–1049

    PubMed  CAS  Google Scholar 

  • Martin SG, Chang F (2006) Dynamics of the formin for3p in actin cable assembly. Curr Biol 16:1161–1170

    PubMed  CAS  Google Scholar 

  • Martin SG, McDonald WH, Yates JR, Chang F (2005) Tea4p links microtubule plus ends with the formin for3p in the establishment of cell polarity. Dev Cell 8:479–491

    PubMed  CAS  Google Scholar 

  • Martin SW, Konopka JB (2004) Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell 3:675–684

    PubMed  CAS  Google Scholar 

  • Mata J, Nurse P (1997) tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89:939–949

    PubMed  CAS  Google Scholar 

  • McDaniel DP, Roberson RW (1998) γ-Tubulin is a component of the Spitzenkörper and centrosomes in hyphal-tip cells of Allomyces macrogynus. Protoplasma 203:118–12

    CAS  Google Scholar 

  • McGoldrick CA, Gruver C, May GS (1995) myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J Cell Biol 128:577–587

    PubMed  CAS  Google Scholar 

  • Miller RK, Heller KK, Frisèn L, Wallack DL, Loayza D, Gammie AE, Rose MD (1998) The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol Biol Cell 9:2051–2068

    PubMed  CAS  Google Scholar 

  • Momany M (2005) Growth control and polarization. Med Mycol 43:S23–S25

    PubMed  CAS  Google Scholar 

  • Momany M, Westfall PJ, Abramowsky G (1999) Aspergillus nidulans swo mutants show defects in polarity establishment, polarity maintenance and hyphal morphogenesis. Genetics 151:557–567

    PubMed  CAS  Google Scholar 

  • Morris NR (1976) Mitotic mutants of Aspergillus nidulans. Genet Res 26:237–254

    Google Scholar 

  • Mouriño-Pérez RR, Roberson RW, Bartnicki-Garcia S (2006) Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genet Biol 43:389–400

    PubMed  Google Scholar 

  • Oakley BR (1995) A nice ring to the centrosome. Nature 378:555–556

    PubMed  CAS  Google Scholar 

  • Oakley BR (2000) An abundance of tubulins. Trends Cell Biol 10:537–542

    PubMed  CAS  Google Scholar 

  • Oakley BR (2004) Tubulins in Aspergillus nidulans. Fungal Genet Biol 41:420–427

    PubMed  CAS  Google Scholar 

  • Oakley CE, Oakley BR (1989) Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipAgene of Aspergillus nidulans. Nature 338:662–664

    PubMed  CAS  Google Scholar 

  • Oakley BR, Oakley CE, Yoon Y, Jung KM (1990) γ-Tubulin is a component of the spindle pole body in Aspergillus nidulans. Cell 61:1289–1301

    PubMed  CAS  Google Scholar 

  • O’Connell MJ, Meluh PB, Rose MD, Morris NR (1993) Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesinlike protein in Aspergillus nidulans. JCell Biol 120:153–162

    CAS  Google Scholar 

  • Ovechkina Y, Maddox P, Oakley CE, Xiang X, Osmani SA, Salomon ED, Oakley BR (2003) Spindle formation in Aspergillus is coupled to tubulin movement into the nucleus. Mol Biol Chem 14:2192–2200

    CAS  Google Scholar 

  • Pereira G, Schiebel E (1997) Centrosome-microtubule nucleation. J Cell Sci 110:295–300

    PubMed  CAS  Google Scholar 

  • Philippsen P, Kaufmann A, Schmitz H-P (2005) Homologues of yeast polarity genes control the development of multinucleated hyphae in Ashbya gossypii. Curr Opin Microbiol 8:370–377

    PubMed  CAS  Google Scholar 

  • Prigozhina NL, Walker RA, Oakley CE, Oakley BR (2001) γ-tubulin and the C-terminal motor domain kinesinlike protein, KLPA, function in the establishment of spindle bipolarity in Aspergillus nidulans. Mol BiolCell 12:3161–3174

    CAS  Google Scholar 

  • Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A (2004) Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20:559–591

    PubMed  CAS  Google Scholar 

  • Requena N, Alberti-Segui C, Winzenburg E, Horn C, Schliwa M, Philippsen P, Liese R, Fischer R (2001) Genetic evidence for a microtubule-destabilizing effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans. Mol Microbiol 42:121–132

    PubMed  CAS  Google Scholar 

  • Riquelme M, Bartnicki-Garcia S (2004) Key differenences between lateral and apical branching in hyphae of Neurospora crassa. Fungal Genet Biol 41:842–851

    PubMed  Google Scholar 

  • Riquelme M, Reynaga-Peña CG, Gierz G, Bartnicki-García S (1998) What determines growth direction in fungal hyphae?. Fungal Genet Biol 24:101–109

    PubMed  CAS  Google Scholar 

  • Riquelme M, Fischer R, Bartnicki-Garcia S (2003) Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma 222:211–215

    PubMed  CAS  Google Scholar 

  • Rischitor P, Konzack S, Fischer R (2004) The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryot Cell 3:632–645

    PubMed  CAS  Google Scholar 

  • Sagot I, Klee SK, Pellman D (2002) Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 4:42–50

    PubMed  CAS  Google Scholar 

  • Sampson K, Heath IB (2005) The dynamic behaviour of microtubules and their contributions to hyphal tip growth in Aspergillus nidulans. Microbiology 151:1543–1555

    PubMed  CAS  Google Scholar 

  • Sawin KE, Snaith HA (2004) Role of microtubules and tea1p in establishment and maintenance of fission yeast cell polarity. J Cell Sci 117:689–700

    PubMed  CAS  Google Scholar 

  • Sawin KE, Lourenco PCC, Snaith HA (2004) Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Curr Biol 14:763–775

    PubMed  CAS  Google Scholar 

  • Schliwa M, Woehlke G (2003) Molecular motors. Nature 422:759–765

    PubMed  CAS  Google Scholar 

  • Schmid J, Harold FM (1988) Dual roles for calcium ions in apical growth of Neurospora crassa. J Gen Microbiol 134:2623–2631

    PubMed  CAS  Google Scholar 

  • Schmitz HP, Kaufmann A, Kohli M, Laissue PP, Philippsen P (2006) From function to shape: a novel role of a forming in morphogenesis of the fungus Ashbya gossypii. Mol Biol Cell 17:130–145

    PubMed  CAS  Google Scholar 

  • Schuyler SC, Pellman D (2001a) Search, capture and signal: games microtubules and centrosomes play. J Cell Sci 114:247–255

    PubMed  CAS  Google Scholar 

  • Schuyler SC, Pellman D (2001b) Microtubule “plus-endtracking proteins”: the end is just the beginning. Cell 105:421–424

    PubMed  CAS  Google Scholar 

  • Seiler S, Nargang FE, Steinberg G, Schliwa M (1997) Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J 16:3025–3034

    PubMed  CAS  Google Scholar 

  • Seiler S, Plamann M, Schliwa M (1999) Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Curr Biol 9:779–785

    PubMed  CAS  Google Scholar 

  • Seiler S, Vogt N, Ziv C, Gorovits R, Yarden O (2006) The STE20/germinal center kinase POD6 interacts with the NDR kinaseCOT1 and is involved in polar tip extension in Neurospora crassa. Mol Biol Cell 17:4080–4092

    PubMed  CAS  Google Scholar 

  • Sharpless KE, Harris SD (2002) Functional characterization and localization of the Aspergillus nidulans forming SEPA. Mol Biol Cell 13:469–479

    PubMed  CAS  Google Scholar 

  • Shaw BD, Kozlova O, Read ND, Turgeon BG, Hoch HC (2001) Expression of recombinant aequorin as an intracellular calcium reporter in the phytopathogenic fungus Phyllosticta ampelicida. Fungal Genet Biol 34:207–215

    PubMed  CAS  Google Scholar 

  • Shaw BD, Momany C, Momany M (2002) Aspergillus nidulans swoF encodes an N-myristoyl transferase. Eukaryot Cell 1:241–248

    PubMed  CAS  Google Scholar 

  • Sheeman B, Carvalho P, Sagot I, Geiser J, Kho D, Hoyt MA, Pellman D (2003) Determinants of S. cerevisiae dynein localization and activation: Implications for the mechanism of spindle positioning. Curr Biol 13:364–372

    PubMed  CAS  Google Scholar 

  • Sietsma JH, Wessels JG (2006) Apical wall biogenesis. In: Kües U, Fischer R (eds) Growth differentiation and sexuality. Springer, Berlin Heidelberg New York, pp 53–72

    Google Scholar 

  • Silverman-Gavrila LB, Lew RR (2002) An IP3-activated Ca2+ channel regulates fungal tip growth. J Cell Sci 115:5013–5025

    PubMed  CAS  Google Scholar 

  • Silverman-Gavrila LB, Lew RR (2003) Calcium gradient dependence of Neurospora crassa hyphal growth. Microbiology 149:2475–2485

    PubMed  CAS  Google Scholar 

  • Snaith HA, Sawin KE (2003) Fission yeast mod5p regulates polarized growth through anchoring of tea1p at cell tips. Nature 423:647–651

    PubMed  CAS  Google Scholar 

  • Snell V, Nurse P (1994) Genetic analysis of cell morphogenesis in fission yeast-a role for casein kinase II in the establishment of polarized growth. EMBO J 13:2066–2074

    PubMed  CAS  Google Scholar 

  • Steinberg G, Wedlich-Söldner R, Brill M, Schulz I (2001) Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. J Cell Sci 114:609–622

    PubMed  CAS  Google Scholar 

  • Straube A, Enard W, Berner A, Wedlich-Söldner R, Kahmann R, Steinberg G (2001) A split motor domain in a cytoplasmic dynein. EMBO J 20:5091–5100

    PubMed  CAS  Google Scholar 

  • Straube A, Brill M, Oakley BR, Horio T, Steinberg G (2003) Microtubule organization requires cell cycledependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Mol Biol Cell 14:642–657

    PubMed  CAS  Google Scholar 

  • Suelmann R, Fischer R (2000) Mitochondrial movement and morphology depend on an intact actin cytoskeleton in Aspergillus nidulans. Cell Motil Cytoskel 45:42–50

    CAS  Google Scholar 

  • Suelmann R, Sievers N, Fischer R (1997) Nuclear traffic in fungal hyphae: in vivo study of nuclear migration and positioning in Aspergillus nidulans. Mol Microbiol 25:757–769

    PubMed  CAS  Google Scholar 

  • Takeshita N, Ohta A, Horiuchi H (2005) CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol Biol Cell 16:1961–1970

    PubMed  CAS  Google Scholar 

  • Takeshita N, Yamashita S, Ohta A, Horiuchi H (2006) Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 59:1380–1394

    PubMed  CAS  Google Scholar 

  • Tcheperegine SE, Gao XD, Bi E (2005) Regulation of cell polarity by interactions of Msb3 andMsb4 with Cdc42 and polarisome components. Mol Cell Biol 25:8567–8580

    PubMed  CAS  Google Scholar 

  • Tran PT, Marsh L, Doye V, Inoue S, Chang F (2001) A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J Cell Biol 153:397–411

    PubMed  CAS  Google Scholar 

  • Veith D, Scherr N, Efimov VP, Fischer R (2005) Role of the spindle-pole body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in Aspergillus nidulans. J Cell Sci 118:3705–3716

    PubMed  CAS  Google Scholar 

  • Venkatram S, Jennings JL, Link A, Gould KL (2005) Mto2p, a novel fission yeast protein required for cytoplasmic microtubule organization and anchoring of the cytokinetic actin ring. Mol Biol Cell 16:3052–3063

    PubMed  CAS  Google Scholar 

  • Virag A, Harris SD (2006a) The Spitzenkörper: amolecular perspective. Mycol Res 110:4–13

    PubMed  CAS  Google Scholar 

  • Virag A, Harris SD (2006b) Functional characterization of Aspergillus nidulans homologues of Saccharomyces cerevisiae Spa2 and Bud6. Eukaryot Cell 5:881–895

    PubMed  CAS  Google Scholar 

  • Wendland J, Walther A (2005) Ashbya gossypii: a model for fungal developmental biology. Nature Rev Microbiol 3:421–429

    CAS  Google Scholar 

  • West RR, Malmstrom T, McIntosh JR (2002) Kinesins klp5 + and klp6 + are required for normal chromosome movement in mitosis. J Cell Sci 115:931–940

    PubMed  CAS  Google Scholar 

  • Woehlke G, Schliwa M (2000) Walking on two heads: the many talents of kinesin. Nat Rev Mol Cell Biol 1:50–58

    PubMed  CAS  Google Scholar 

  • Wu Q, Sandrock TM, Turgeon BG, Yoder OC, Wirsel SG, Aist JR (1998) A fungal kinesin required for organelle motility, hyphal growth, and morphogenesis. Mol Biol Chem 9:89–101

    CAS  Google Scholar 

  • Xiang X, Fischer R (2004) Nuclear migration and positioning in filamentous fungi. Fungal Genet Biol 41:411–419

    PubMed  CAS  Google Scholar 

  • Xiang X, Beckwith SM, Morris NR (1994) Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Sci USA 91:2100–2104

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Hiraoka Y (2003) Cytoplasmic dynein in fungi: insights from nuclear migration. J Cell Sci 116:4501–4512

    PubMed  CAS  Google Scholar 

  • Yamashita RA, Osherov N, May GS (2000) Localization of wild type and mutant class I myosin proteins in Aspergillus nidulans using GFP-fusion proteins. Cell Motil Cytoskel 45:163–172

    CAS  Google Scholar 

  • Yildiz A, Selvin PR (2005) Kinesin: walking, crawling or sliding along?. Trends Cell Biol 15:112–120

    PubMed  CAS  Google Scholar 

  • Zhang J, Han G, Xiang X (2002) Cytoplasmic dynein intermediate chain and heavy chain are dependent upon each other for microtubule end localization in Aspergillus nidulans. Mol Microbiol 44:381–392

    PubMed  CAS  Google Scholar 

  • Zhang J, Li S, Fischer R, Xiang X (2003) The accumulation of cytoplasmic dynein and dynactin at microtubule plusends is kinesin dependent in Aspergillus nidulans. Mol Biol Cell 14:1479–1488

    PubMed  CAS  Google Scholar 

  • Zheng XD, Wang YM, Wang Y (2003) CaSPA2 is important for polarity establishment and maintenance in Candida albicans. Mol Microbiol 49:1391–1405

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, R. (2007). The Cytoskeleton and Polarized Growth of Filamentous Fungi. In: Howard, R.J., Gow, N.A.R. (eds) Biology of the Fungal Cell. The Mycota, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70618-2_5

Download citation

Publish with us

Policies and ethics