Skip to main content

The Fungal Woronin Body

  • Chapter
Biology of the Fungal Cell

Part of the book series: The Mycota ((MYCOTA,volume 8))

Abstract

Until 1999, Candida albicans was considered asexual. In that year, a mating type-like (MTL) locus was identified, and in the following year mating between a/a and alpha/alpha strains was demonstrated. While the mating process of C. albicans proved similar to that of Saccharomyces cerevisiae, unique features of the process related it to both high frequency phenotypic switching (i.e., the white-opaque transition) and virulence. In order for strains of C. albicans to mate, they first had to undergo MTL-homozygosis from a/alpha to a/a or alpha/alpha, but that was not sufficient. They then had to switch from the white to the opaque phase, a reversible transition involving the regulation of 6% of the C. albicans genome. But why did C. albicans have to undergo this complex differentiation when S. cerevisiae did not? Could it be related to pathogenesis? There is evidence that C. albicans undergoes this transition to facilitate mating through a unique signaling system between mating-competent opaque and mating-incompetent white cells that leads to the genesis of a biofilm. Candida glabrata was also considered asexual until 2003, when a mating system similar to that of S. cerevisiae was identified. While mating type switching has been demonstrated in C. glabrata, the mating event has not . It is also not clear if the mating process of C. glabrata is related to virulence, as it appears to be in C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexopolous CJ, Mims CW, Blackwell M (1996) Introductory mycology. Wiley, Chichester

    Google Scholar 

  • Bartnicki-Garcia S, Bracker CE, Gierz G, Lopez-Franco R, Lu H (2000) Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and role of turgor. Biophys J 79:2382–2390

    PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geological time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol VII, part B. Systematics and evolution. Springer, Berlin Heidelberg New York, pp 229–245

    Google Scholar 

  • Berns MW, Aist JR, Wright WH, Liang H (1992) Optical trapping in animal and fungal cells using a tunable, near-intrared titanium-sapphire laser. Exp Cell Res 198:375–378

    Article  PubMed  CAS  Google Scholar 

  • Bracker CE (1967) Ultrastructure of fungi. Annu Rev Phytopathol 5:343–374

    Article  Google Scholar 

  • Brenner DM, Carrol GC (1968) Fine structural correlates of growth in hyphae of Ascodesmis sphaerospora. Journal of Bacteriology 95:658–671

    PubMed  CAS  Google Scholar 

  • Bruns TD, Vilgalys S, Barns D, Gonzalez DS, Hibbett DJ, Lane L, Simon S, Stickel TM, Szaro WG, Weisburg WG, Sogin ML (1992) Evolutionary relationships within the fungi: analyses of nuclear small subunit RNA sequences. Mol Phylogenet Evol 1:231–241

    Article  PubMed  CAS  Google Scholar 

  • Buller AHR (1933a) The formation of hyphal fusions in the mycelium of the higher fungi. In: Buller AHR (ed) Researches on fungi, vol V. Longmans, London, pp 1–74

    Google Scholar 

  • Buller AHR (1933b) The translocation of protoplasm through septate mycelium of certain Pyrenomycetes, Discomycetes and Hymenomycetes. In: Buller AHR (ed) Researches on fungi, vol V. Longmans, London, pp 75–167

    Google Scholar 

  • Buller AHR (1933c) Woronin bodies and their movements. In: Buller AHR (ed) Researches on fungi, vol V. Longmans, London, pp 127–130

    Google Scholar 

  • Camp RR (1977) Association of microbodies, Woronin bodies, and septa in intercellular hyphae of Cymadothea trifolii. Can J Bot 55:1856–1859

    Google Scholar 

  • Cole L, Orlovick DA, Ashford AE (1998) Structure, function, and motility of vacuoles in filamentous fungi. Fungal Genet Biol 24:86–100

    Article  PubMed  Google Scholar 

  • Collinge AJ, Markham P (1982) Hyphal tip ultrastructure of Aspergillus nidulans and Aspergillus giganteus and possible implications of Woronin bodies close to the hyphal apex of the latter species. Protoplasma 113:209–213

    Article  Google Scholar 

  • Collinge AJ, Markham P (1985) Woronin bodies rapidly plug septal pores of severed Penicillium chrysogenum hyphae. Exp Mycol 9:80–85

    Article  Google Scholar 

  • Curach NC, Te’o VS, Gibbs MD, Bergquist PL, Nevalainen KM (2004) Isolation, characterization and expression of the hex1 gene from Trichoderma reesei. Gene 331:33–140

    Article  CAS  Google Scholar 

  • Gallagher KL, Benfey PN (2005) Not just another hole in the wall: understanding intercellular protein trafficking. Genes Dev 19:189–195

    Article  PubMed  CAS  Google Scholar 

  • Glass NL, Rasmussen C, Roca G, Read ND (2004) Hyphal homing, hyphal fusion and mycelial interconnectedness. Trends Microbiol 12:135–141

    Article  PubMed  CAS  Google Scholar 

  • Henrick K, Thornton JM (1998) PQS: a protein quaternary structure file server. Trends Biol Sci 23:358–361

    Article  CAS  Google Scholar 

  • Hoch HC, Maxwell DP (1974) Proteinaceous hexagonal inclusion in hyphae of Whetzelinia sclerotiorum and Neurospora crassa. Can J Microbiol 20:1029–1036

    PubMed  CAS  Google Scholar 

  • Jedd G (2006) Natural history of the fungal hypha: how Woronin bodies support a multicellular lifestyle. In: Gadd GM (ed) Fungi in the environment. Cambridge University, Cambridge

    Google Scholar 

  • Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nature Cell Biol 2:226–231

    Article  PubMed  CAS  Google Scholar 

  • Jennings DH, Thornton JD, Galpin MF, Coggins CR (1974) Translocation in fungi. Symp Soc Exp Biol 28:139–156

    PubMed  Google Scholar 

  • Kim KK, Hung LW, Yokota H, Kim R, Kim SH (1998) Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8° resolution. Proc of the Natl Acad Sci USA 95:10419–10424

    Article  CAS  Google Scholar 

  • Kyrpides NC, Woese CR (1998) Universally conserved translation initiation factors. Proc Natl Acad Sci USA 95:224–228

    Article  PubMed  CAS  Google Scholar 

  • Landvik S, Schumacher TK, Eriksson OE, Moss ST (2003) Morphology and ultrastructure of Neolecta species. Mycol Res 107:1021–1031

    Article  PubMed  Google Scholar 

  • Lew RR (2005) Mass flow and pressure-driven hyphal extension in Neurospora crassa. Microbiology 151:2685–2692

    Article  PubMed  CAS  Google Scholar 

  • Lew RR, Levina NN, Walker SK, Garrill A (2004) Turgor regulation in hyphal organisms. Fungal Genet Biol 11:1007–1015

    Article  CAS  Google Scholar 

  • Lim DB, Hains P, Walsh B, Bergquist P, Nevalainen H (2001) Proteins associated with the cell envelope of Trichoderma reesei: a proteomic approach. Proteomics 1:899–909

    Article  PubMed  CAS  Google Scholar 

  • Lutzoni F, Kauff F, Cox JC, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Shcoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung G-H, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim Y-W, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Google Scholar 

  • Markham P, Collinge AJ (1987) Woronin bodies of filamentous fungi. FEMS Microbiol Rev 46:1–11

    Article  Google Scholar 

  • Maruyama J, Juvvadi PR, Ishi K, Kitamoto K (2005) Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock induced hyphal tip bursting in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 331:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • McClure WK, Park D, Robinson PM (1968) Apical organization in the somatic hyphae of fungi. J Gen Microbiol 50:177–182

    PubMed  CAS  Google Scholar 

  • McKeen WE (1971) Woronin bodies in Erysiphe graminis DC. Can J Microbiol 17:1557–1563

    Article  PubMed  CAS  Google Scholar 

  • Momany M, Richardson EA, Van Sickle C, Jedd G (2002) Mapping Woronin body position in Aspergillus nidulans. Mycologia 94:260–266

    Article  Google Scholar 

  • Money NP, Harold FM (1992) Extension growth of the water mold Achlya: interplay of turgor and wall strangth. Proc Natl Acad Sci USA 15:4245–4259

    Article  Google Scholar 

  • Money NP, Davis CM, Ravishankar JP (2004) Biochemical evidence for convergent evolution of the invasive growth process among fungi and oomycete water molds. Fungal Genet Biol 41:872–876

    Article  PubMed  Google Scholar 

  • Muller WH, Montijn RC, Humbel BM, Aelst AC van, Boon EJMC, Krift TP van der, Boekhout T (1998) Structural differences between two types of basidiomycete septal pore caps. Microbiology 144:1721–1730

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Peat TS, Newman J, Waldo GS, Berendzen J, Terwilliger TC (1998) Structure of translation initiation factor 5A from Pyrobaculum aerophilum at 1.75° resolution. Structure 6:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Rosorius O, Reichart B, Kratzer F, Heger P, Dabauvalle MC, Hauber J (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM. J Cell Sci 112:2369–2380

    PubMed  CAS  Google Scholar 

  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Shepherd VA, Orlovick DA, Ashford AE (1993) Cell-to-cell transport via motile tubules in growing hyphae of a fungus. J Cell Sci 105:1173–1178

    PubMed  Google Scholar 

  • Sosinsky GE, Nicholson BJ (2005) Structural organization of gap junction channels. Biochim Biophys Acta 1711:99–125

    Article  PubMed  CAS  Google Scholar 

  • Soundararajan S, Jedd G, Li X, Ramos-Pamplona M, Chua NH, Naqvi NI (2004) Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16:1564–1574

    Article  PubMed  CAS  Google Scholar 

  • Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ (2000) hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet Biol 31:205–217

    Article  PubMed  CAS  Google Scholar 

  • Ternetz C (1900) Protoplasmabewegung und Fruchtkoperbildung bei Ascophanus carneus. Jahrb Wiss Bot 35:273–312

    Google Scholar 

  • Tey WK, North AJ, Reyes JL, Lu YF, Jedd G (2005) Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony. Mol Biol Cell 16:2651–2659

    Article  PubMed  CAS  Google Scholar 

  • Trinci APJ (1971) Influence of the width of the peripheral growth zone on the radial growth rate of fungal colonies on solid media. J Gen Microbiol 67:325–344

    Google Scholar 

  • Trinci APJ, Collinge AJ (1973) Occlusion of septal pores of damaged hyphae of Neurospora crassa by hexagonal crystals. Protoplasma 80:57–67

    Article  Google Scholar 

  • Wergin WP (1973) Development of Woronin bodies from microbodies in Fusarium oxysporum f.sp. lycopersici. Protoplasma 76:249–260

    Article  PubMed  CAS  Google Scholar 

  • Woronin M (1864) Zur Entwicklungsgeschichte der Ascobolus pulcherrimus Cr und eigiger Pezizen. Abh Senkenb Naturforsch Ges 5:333–344

    Google Scholar 

  • Yuan P, Jedd G, Kumaran D, Swaminathan S, Shio H, Hewitt D, Chua NH, Swaminathan K (2003) A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat Struct Biol 10:264–270

    Article  PubMed  CAS  Google Scholar 

  • Zuk D, Jacobson D (1998) A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J 17:2914–2925

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dhavale, T., Jedd, G. (2007). The Fungal Woronin Body. In: Howard, R.J., Gow, N.A.R. (eds) Biology of the Fungal Cell. The Mycota, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70618-2_3

Download citation

Publish with us

Policies and ethics