Skip to main content

Human Immunology of Measles Virus Infection

  • Chapter
Measles

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 330))

Measles is a highly contagious disease, which was responsible for high infant mortality before the advent of an effective vaccine in 1963. In immuno-competent individuals, measles virus (MV) infection triggers an effective immune response that starts with innate responses and then leads to successful adaptive immunity, including cell-mediated immunity and humoral immunity. The virus is cleared and lifelong protection is acquired. However, changing epidemiology of measles due to vaccination as well as severe immunodeficiency has created new pockets of individuals vulnerable to measles. This chapter reviews the knowledge on effective measles-specific immune responses induced by natural infection and vaccination and explores problems arising in specific cases of immunodeficiency, infant immunity, and ineffective vaccination against measles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous (2006) Progress in reducing global measles deaths: 1999–2004. Wkly Epidemiol Rec 81:90–94

    Google Scholar 

  • Aaby P (1988) Malnutrition and overcrowding/intensive exposure in severe measles infection:review of community studies. Rev Infect Dis 10:478–491

    PubMed  CAS  Google Scholar 

  • Aaby P, Clements CJ (1989) Measles immunization research: a review. Bull World Health Organ 67:443–8

    PubMed  CAS  Google Scholar 

  • al-Attar I, Reisman J, Muehlmann M, McIntosh K (1995) Decline of measles antibody titers after immunization in human immunodeficiency virus-infected children. Pediatr Infect Dis J 14:149–151

    PubMed  CAS  Google Scholar 

  • Albrecht P, Ennis FA, Saltzman EJ, Krugman S (1977) Persistence of maternal antibody in infants beyond 12 months: mechanism of measles vaccine failure. J Pediatr 91:715–718

    PubMed  CAS  Google Scholar 

  • Anders JF, Jacobson RM, Poland GA, Jacobsen SJ, Wollan PC (1996) Secondary failure rates of measles vaccines: a metaanalysis of published studies. Pediatr Infect Dis J 15:62–66

    PubMed  CAS  Google Scholar 

  • Arpadi SM, Markowitz LE, Baughman AL, Shah K, Adam H, Wiznia A, Lambert G, Dobroszycki J, Heath JL, Bellini WJ (1996) Measles antibody in vaccinated human immunodeficiency virus type 1-infected children. Pediatrics 97:653–657

    PubMed  CAS  Google Scholar 

  • Atabani SF, Byrnes AA, Jaye A, Kidd IM, Magnusen AF, Whittle H, Karp CL (2001) Natural measles causes prolonged suppression of interleukin-12 production. J Infect Dis 184:1–9

    PubMed  CAS  Google Scholar 

  • Audet S, Virata-Theimer ML, Beeler JA, Scott DE, Frazier DJ, Mikolajczyk MG, Eller N, Chen FM, Yu MY (2006) Measles-virus-neutralizing antibodies in intravenous immunoglobulins. J Infect Dis 194:781–789

    PubMed  CAS  Google Scholar 

  • Aurpibul L, Puthanakit T, Sirisanthana T, Sirisanthana V (2007) Response to measles, mumps, and rubella revaccination in HIV-infected children with immune recovery after highly active antiretroviral therapy. Clin Infect Dis 45:637–642

    PubMed  Google Scholar 

  • Bautista-Lopez N, Ward BJ, Mills E, McCormick D, Martel N, Ratnam S (2000) Development and durability of measles antigen-specific lymphoproliferative response after MMR vaccination. Vaccine 18 1393–1401

    PubMed  CAS  Google Scholar 

  • Bautista-Lopez NL, Vaisberg A, Kanashiro R, Hernandez H, Ward BJ (2001) Immune response to measles vaccine in Peruvian children. Bull World Health Organ 79:1038–1046

    PubMed  CAS  Google Scholar 

  • Bech V (1959) Studies on the development of complement fixing antibodies in measles patients.Observations during a measles epidemic in Greenland. J Immunol 83:267–275

    PubMed  CAS  Google Scholar 

  • Bellini WJ, Rota PA (1998) Genetic diversity of wild-type measles viruses: implications for global measles elimination programs. Emerg Infect Dis 4:29–35

    PubMed  CAS  Google Scholar 

  • Bellini WJ, Rota JS, Rota PA (1994) Virology of measles virus. J Infect Dis 170 [Suppl 1]:S15–S23

    PubMed  Google Scholar 

  • Berghall H, Siren J, Sarkar D, Julkunen I, Fisher PB, Vainionpaa R, Matikainen S (2006) The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokines. Microbes Infect 8:2138–2144

    PubMed  Google Scholar 

  • Berkelhamer S, Borock E, Elsen C, Englund J, Johnson D (2001) Effect of highly active antiret-roviral therapy on the serological response to additional measles vaccinations in human immunodeficiency virus-infected children. Clin Infect Dis 32:1090–1094

    PubMed  CAS  Google Scholar 

  • Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP, Wagner H,Kirschning CJ, Ter Meulen V, Schneider-Schaulies S (2002) Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76:8729–8736

    PubMed  CAS  Google Scholar 

  • Black FL (1989) Measles active and passive immunity in a worldwide perspective. Prog Med Virol 36:1–33

    PubMed  CAS  Google Scholar 

  • Bouche FB, Ertl OT, Muller CP (2002) Neutralizing B cell response in measles. Viral Immunol 15:451–471

    PubMed  CAS  Google Scholar 

  • Brena AE, Cooper ER, Cabral HJ, Pelton SI (1993) Antibody response to measles and rubella vaccine by children with HIV infection. J Acquir Immune Defic Syndr 6:1125–1129

    PubMed  CAS  Google Scholar 

  • Burnet FM (1968) Measles as an index of immunological function. Lancet 2:610–613

    PubMed  CAS  Google Scholar 

  • Centers for Disease Control (1988) Measles in HIV-infected children, United States. MMWR Morb Mortal Wkly Rep 37:183–186

    Google Scholar 

  • Chen RT, Markowitz LE, Albrecht P, Stewart JA, Mofenson LM, Preblud SR, Orenstein WA (1990) Measles antibody: reevaluation of protective titers. J Infect Dis 162:1036–1042

    PubMed  CAS  Google Scholar 

  • Clements CJ, Hussey GD (2004) Measles. In: Murray CJL, Lopez AD, Mathers CD (eds) The burden of disease and injury series. Volume I V. Global epidemiology of infectious diseases. http://whqlibdoc.who.int/publications/2004/9241592303_chap4.pdf. Cited 10 June 2008. World Health Organization, Geneva

    Google Scholar 

  • Cutts FT, Henderson RH, Clements CJ, Chen RT, Patriarca PA (1991) Principles of measles control. Bull World Health Organ 69:1–7

    PubMed  CAS  Google Scholar 

  • Dabis F, Waldman RJ, Mann GF, Commenges D, Madzou G, Jones TS (1989) Loss of maternal measles antibody during infancy in an African city. Int J Epidemiol 18:264–268

    PubMed  CAS  Google Scholar 

  • Dai B, Chen ZH, Liu QC, Wu T, Guo CY, Wang XZ, Fang HH, Xiang YZ (1991) Duration of immunity following immunization with live measles vaccine: 15 years of observation in Zhejiang Province, China. Bull World Health Organ 69:415–423

    PubMed  CAS  Google Scholar 

  • de Francisco A, Hall AJ, Unicomb L, Chakraborty J, Yunus M, Sack RB (1998) Maternal measles antibody decay in rural Bangladeshi infants--implications for vaccination schedules. Vaccine 16:564–568

    PubMed  Google Scholar 

  • de Moraes-Pinto MI, Almeida AC, Kenj G, Filgueiras TE, Tobias W, Santos AM, Carneiro-Sampaio MM, Farhat CK, Milligan PJ, Johnson PM, Hart CA (1996) Placental transfer and maternally acquired neonatal IgG immunity in human immunodeficiency virus infection. J Infect Dis 173:1077–1084

    PubMed  Google Scholar 

  • de Moraes-Pinto MI, Verhoeff F, Chimsuku L, Milligan PJ, Wesumperuma L, Broadhead RL,Brabin BJ, Johnson PM, Hart CA (1998) Placental antibody transfer: influence of maternal HIV infection and placental malaria. Arch Dis Child Fetal Neonatal Ed 79:F202–F205

    PubMed  Google Scholar 

  • Dhiman N, Ovsyannikova IG, Jacobson RM, Vierkant RA, Pankratz VS, Jacobsen SJ, Poland GA (2005a) Correlates of lymphoproliferative responses to measles, mumps, and rubella (MMR) virs vaccines following MMR-II vaccination in healthy children. Clin Immunol 115:154–161

    CAS  Google Scholar 

  • Dhiman N, Ovsyannikova IG, Ryan JE, Jacobson RM, Vierkant RA, Pankratz VS, Jacobsen SJ,Poland GA (2005b) Correlations among measles virus-specific antibody, lymphoproliferation and Th1/Th2 cytokine responses following measles-mumps-rubella-II (MMR-II) vaccination.Clin Exp Immunol 142:498–504

    CAS  Google Scholar 

  • Dhiman N, Ovsyannikova IG, Cunningham JM, Vierkant RA, Kennedy RB, Pankratz VS, Poland GA, Jacobson RM (2007a) Associations between measles vaccine immunity and single-nucle-otide polymorphisms in cytokine and cytokine receptor genes. J Infect Dis 195:21–29

    CAS  Google Scholar 

  • Dhiman N, Poland GA, Cunningham JM, Jacobson RM, Ovsyannikova IG, Vierkant RA, Wu Y,Pankratz VS (2007b) Variations in measles vaccine-specific humoral immunity by polymorphisms in SLAM and CD46 measles virus receptors. J Allergy Clin Immunol 120:666–672

    CAS  Google Scholar 

  • El Mubarak HS, Ibrahim SA, Vos HW, Mukhtar MM, Mustafa OA, Wild TF, Osterhaus AD, de Swart RL (2004) Measles virus protein-specific IgM, IgA, and IgG subclass responses during the acute and convalescent phase of infection. J Med Virol 72:290–298

    PubMed  CAS  Google Scholar 

  • Farquhar C, Nduati R, Haigwood N, Sutton W, Mbori-Ngacha D, Richardson B, John-Stewart G (2005) High maternal HIV-1 viral load during pregnancy is associated with reduced placental transfer of measles IgG antibody. J Acquir Immune Defic Syndr 40:494–497

    PubMed  Google Scholar 

  • Fontana JM, Bankamp B, Bellini WJ, Rota PA (2008) Virology 28:28

    Google Scholar 

  • Forthal DN, Landucci G, Habis A, Zartarian M, Katz J, Tilles JG (1994) Regulation of interferon signaling by the C and V proteins from attenuated and wild-type strains of measles virus. J Infect Dis 169:1377–1380

    PubMed  CAS  Google Scholar 

  • Fujinami RS, Oldstone MB (1979) Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature 279:529–530

    PubMed  CAS  Google Scholar 

  • Fujinami RS, Oldstone MB (1980) Alterations in expression of measles virus polypeptides by antibody: molecular events in antibody-induced antigenic modulation. J Immunol 125:78–85

    PubMed  CAS  Google Scholar 

  • Fulginiti VA, Eller JJ, Downie AW, Kempe CH (1967) Altered reactivity to measles virus.Atypical measles in children previously immunized with inactivated measles virus vaccines.JAMA 202:1075–1080

    PubMed  CAS  Google Scholar 

  • Gans HA, Arvin AM, Galinus J, Logan L, DeHovitz R, Maldonado Y (1998) Deficiency of the humoral immune response to measles vaccine in infants immunized at age 6 months. JAMA 280:527–532

    PubMed  CAS  Google Scholar 

  • Gans HA, Maldonado Y, Yasukawa LL, Beeler J, Audet S, Rinki MM, DeHovitz R, Arvin AM (1999) IL-12, IFN-gamma, and T cell proliferation to measles in immunized infants. J Immunol 162:5569–5575

    PubMed  CAS  Google Scholar 

  • Gans H, Yasukawa L, Rinki M, DeHovitz R, Forghani B, Beeler J, Audet S, Maldonado Y, Arvin AM (2001) Immune responses to measles and mumps vaccination of infants at 6, 9, and 12 months. J Infect Dis 184:817–826

    PubMed  CAS  Google Scholar 

  • Gans H, DeHovitz R, Forghani B, Beeler J, Maldonado Y, Arvin AM (2003) Measles and mumps vaccination as a model to investigate the developing immune system: passive and active immunity during the first year of life. Vaccine 21:3398–3405

    PubMed  CAS  Google Scholar 

  • Gans HA, Yasukawa LL, Alderson A, Rinki M, DeHovitz R, Beeler J, Audet S, Maldonado Y,Arvin AM (2004) Humoral and cell-mediated immune responses to an early 2-dose measles vaccination regimen in the United States. J Infect Dis 190:83–90

    PubMed  Google Scholar 

  • Good RA, Zak SJ (1956) Disturbances in gamma globulin synthesis as experiments of nature.Pediatrics 18:109–149

    PubMed  CAS  Google Scholar 

  • Griffin DE (2007) Measles virus. In: Knipe DM (ed) Fields virology. Lippincott Williams and Wilkins, Philadelphia, pp 1551

    Google Scholar 

  • Griffin DE, Ward BJ (1993) Differential CD4 T cell activation in measles. J Infect Dis 168:275–281

    PubMed  CAS  Google Scholar 

  • Griffin DE, Ward BJ, Jauregui E, Johnson RT, Vaisberg A (1989) Immune activation in measles.N Eng J Med 320:1667–1672

    CAS  Google Scholar 

  • Griffin DE, Ward BJ, Jauregui E, Johnson T, Vaisberg A (1990) Immune activation during measles: interferon-gamma and neopterin in plasma and cerebrospinal fluid in complicated and uncomplicated disease. J Infect Dis 161:449–453

    PubMed  CAS  Google Scholar 

  • Griffin DE, Ward BJ, Juaregui E, Johnson RT, Vaisberg A (1992) Immune activation during measles: beta 2-microglobulin in plasma and cerebrospinal fluid in complicated and uncomplicated disease. J Infect Dis 166:1170–1173

    PubMed  CAS  Google Scholar 

  • Hahm B, Cho JH, Oldstone MB (2007) Measles virus-dendritic cell interaction via SLAM inhibits innate immunity: selective signaling through TLR4 but not other TLRs mediates suppression of IL-12 synthesis. Virology 358:251–257

    PubMed  CAS  Google Scholar 

  • Halsey NA, Boulos R, Mode F, Andre J, Bowman L, Yaeger RG, Toureau S, Rohde J, Boulos C (1985) Response to measles vaccine in Haitian infants 6 to 12 months old. Influence of maternal antibodies, malnutrition, and concurrent illnesses. N Engl J Med 313:544–549

    PubMed  CAS  Google Scholar 

  • Helfand RF, Heath JL, Anderson LJ, Maes EF, Guris D, Bellini WJ (1997) Diagnosis of measles with an IgM capture EIA: the optimal timing of specimen collection after rash onset. J Infect Dis 175:195–199

    PubMed  CAS  Google Scholar 

  • Helfand RF, Kebede S, Gary HE Jr, Beyene H, Bellini WJ (1999) Timing of development of measles-specific immunoglobulin M and G after primary measles vaccination. Clin Diagn Lab Immunol 6:178–180

    PubMed  CAS  Google Scholar 

  • Helfand RF, Moss WJ, Harpaz R, Scott S, Cutts F (2005) Evaluating the impact of the HIV pandemic on measles control and elimination. Bull World Health Organ 83:329–337

    PubMed  Google Scholar 

  • Helminen ME, Kilpinen S, Virta M, Hurme M (2001) Susceptibility to primary Epstein-Barr virus infection is associated with interleukin-10 gene promoter polymorphism. J Infect Dis 184:777–780

    PubMed  CAS  Google Scholar 

  • Howe RC, Dhiman N, Ovsyannikova IG, Poland GA (2005) Induction of CD4 T cell proliferation and in vitro Th1-like cytokine responses to measles virus. Clin Exp Immunol 140:333–342

    PubMed  CAS  Google Scholar 

  • Hurme M, Haanpaa M, Nurmikko T, Wang XY, Virta M, Pessi T, Kilpinen S, Hulkkonen J,Helminen M (2003) IL-10 gene polymorphism and herpesvirus infections. J Med Virol 70 [Suppl 1]:S48–S50

    PubMed  CAS  Google Scholar 

  • Jabbour JT, Carcia HJ, Lemmi H, Ragland J, Duenas DA, Sever JL (1969) Subacute sclerosing panencephalitis. A multidisciplinary study of eight cases. JAMA 207:2248–2254

    PubMed  CAS  Google Scholar 

  • Jaye A, Magnusen AF, Sadiq AD, Corrah T, Whittle HC (1998) Ex vivo analysis of cytotoxic Tlymphocytes to measles antigens during infection and after vaccination in Gambian children.J Clin Invest 102:1969–1977

    PubMed  CAS  Google Scholar 

  • Jaye A, Herberts CA, Jallow S, Atabani S, Klein MR, Hoogerhout P, Kidd M, van Els CA, Whittle HC (2003) Vigorous but short-term gamma interferon T-cell responses against a dominant HLA-A*02-restricted measles virus epitope in patients with measles. J Virol 77:5014–5016

    PubMed  CAS  Google Scholar 

  • Karp CL, Wysocka M, Wahl LM, Ahearn JM, Cuomo PJ, Sherry B, Trinchieri G, Griffin DE (1996) Mechanism of suppression of cell-mediated immunity by measles virus. Science 273:228–231

    PubMed  CAS  Google Scholar 

  • Kaslow RA, Dorak T, Tang JJ (2005) Influence of host genetic variation on susceptibility to HIV type 1 infection. J Infect Dis 191 [Suppl 1]:S68–S77

    PubMed  Google Scholar 

  • Krasinski K, Borkowsky W (1989) Measles and measles immunity in children infected with human immunodeficiency virus. JAMA 261:2512–2516

    PubMed  CAS  Google Scholar 

  • Krugman S (1977) Present status of measles and rubella immunization in the United States: a medical progress report. J Pediatr 90:1–12

    PubMed  CAS  Google Scholar 

  • Langmuir AD (1962) Medical importance of measles. Am J Dis Child 103:224–226

    PubMed  CAS  Google Scholar 

  • Lanzavecchia A, Sallusto F (2005) Understanding the generation and function of memory T cell subsets. Curr Opin Immunol 17:326–332

    PubMed  CAS  Google Scholar 

  • Lee MS, Nokes DJ (2001) Predicting and comparing long-term measles antibody profiles of different immunization policies. Bull World Health Organ 79:615–624

    PubMed  CAS  Google Scholar 

  • Lee MS, Chien LJ, Yueh YY, Lu CF (2001) Measles seroepidemiology and decay rate of vaccine-induced measles IgG titers in Taiwan, 1995–1997. Vaccine 19:4644–4651

    PubMed  CAS  Google Scholar 

  • Malvoisin E, Wild F (1990) Contribution of measles virus fusion protein in protective immunity:anti-F monoclonal antibodies neutralize virus infectivity and protect mice against challenge. J Virol 64:5160–5162

    PubMed  CAS  Google Scholar 

  • Markowitz LE, Chandler FW, Roldan EO, Saldana M, Roach KC, Hutchins SS, Preblud SR,Mitchell CD, Scott GB (1988) Fatal measles pneumonia without rash in a child with AIDS. J Infect Dis 158:480–483

    PubMed  CAS  Google Scholar 

  • Markowitz LE, Albrecht P, Rhodes P, Demonteverde R, Swint E, Maes EF, Powell C, Patriarca PA (1996) Changing levels of measles antibody titers in women and children in the United States:impact on response to vaccination. Kaiser Permanente Measles Vaccine Trial Team. Pediatrics 97:53–58

    CAS  Google Scholar 

  • Mitus A, Holloway A, Evans AE, Enders JF (1962) Attenuated measles vaccine in children with acute leukemia. Am J Dis Child 103:413–418

    PubMed  CAS  Google Scholar 

  • Moss WJ (2007) Measles still has a devastating impact in unvaccinated populations. PLoS Med 4: e24

    PubMed  Google Scholar 

  • Moss WJ, Cutts F, Griffin DE (1999) Implications of the human immunodeficiency virus epidemic for control and eradication of measles. Clin Infect Dis 29:106–112

    PubMed  CAS  Google Scholar 

  • Moss WJ, Ryon JJ, Monze M, Griffin DE (2002) Differential regulation of interleukin (IL)-4, IL-5,and IL-10 during measles in Zambian children. J Infect Dis 186:879–887

    PubMed  CAS  Google Scholar 

  • Moss WJ, Fisher C, Scott S, Monze M, Ryon JJ, Quinn TC, Griffin DE, Cutts FT (2008) HIV type 1 infection is a risk factor for mortality in hospitalized Zambian children with measles. Clin Infect Dis 46:523–527

    PubMed  Google Scholar 

  • Mossong J, O'Callaghan CJ, Ratnam S (2000) Modelling antibody response to measles vaccine and subsequent waning of immunity in a low exposure population. Vaccine 19:523–529

    PubMed  CAS  Google Scholar 

  • Mustafa MM, Weitman SD, Winick NJ, Bellini WJ, Timmons CF, Siegel JD (1993) Subacute measles encephalitis in the young immunocompromised host: report of two cases diagnosed by polymerase chain reaction and treated with ribavirin and review of the literature. Clin Infect Dis 16:654–660

    PubMed  CAS  Google Scholar 

  • Nadel S, McGann K, Hodinka RL, Rutstein R, Chatten J (1991) Measles giant cell pneumonia in a child with human immunodeficiency virus infection. Pediatr Infect Dis J 10:542–544

    Article  PubMed  CAS  Google Scholar 

  • Nair N, Gans H, Lew-Yasukawa L, Long-Wagar AC, Arvin A, Griffin DE (2007) Age-dependent differences in IgG isotype and avidity induced by measles vaccine received during the first year of life. J Infect Dis 196:1339–1345

    PubMed  Google Scholar 

  • Nanan R, Carstens C, Kreth HW (1995) Demonstration of virus-specific CD8+ memory T cells in measles-seropositive individuals by in vitro peptide stimulation. Clin Exp Immunol 102:40–45

    PubMed  CAS  Google Scholar 

  • Nanan R, Rauch A, Kampgen E, Niewiesk S, Kreth HW (2000) A novel sensitive approach for frequency analysis of measles virus-specific memory T-lymphocytes in healthy adults with a childhood history of natural measles. J Gen Virol 81:1313–1319

    PubMed  CAS  Google Scholar 

  • Naniche D, Yeh A, Eto D, Manchester M, Friedman RM, Oldstone MB (2000) Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of Alpha/Beta interferon production. J Virol 74:7478–7484

    PubMed  CAS  Google Scholar 

  • Naniche D, Garenne M, Rae C, Manchester M, Buchta R, Brodine SK, Oldstone MB (2004)Decrease in measles virus-specific CD4 T cell memory in vaccinated subjects. J Infect Dis 190:1387–1395

    PubMed  Google Scholar 

  • Nicoara C, Zach K, Trachsel D, Germann D, Matter L (1999) Decay of passively acquired maternal antibodies against measles, mumps, and rubella viruses. Clin Diagn Lab Immunol 6:868–871

    PubMed  CAS  Google Scholar 

  • Norrby E, Gollmar Y (1972) Appearance and persistence of antibodies against different virus components after regular measles infections. Infect Immun 6:240–247

    PubMed  CAS  Google Scholar 

  • Norrby E, Orvell C, Vandvik B, Cherry JD (1981) Antibodies against measles virus polypeptides in different disease conditions. Infect Immun 34:718–724

    PubMed  CAS  Google Scholar 

  • Okoko BJ, Wesuperuma LH, Ota MO, Banya WA, Pinder M, Gomez FS, Osinusi K, Hart AC (2001a) Influence of placental malaria infection and maternal hypergammaglobulinaemia on materno-foetal transfer of measles and tetanus antibodies in a rural west African population. J Health Popul Nutr 19:59–65

    CAS  Google Scholar 

  • Okoko JB, Wesumperuma HL, Hart CA (2001b) The influence of prematurity and low birthweight on transplacental antibody transfer in a rural West African population. Trop Med Int Health 6:529–534

    CAS  Google Scholar 

  • Ota MO, Ndhlovu Z, Oh S, Piyasirisilp S, Berzofsky JA, Moss WJ, Griffin DE (2007) Hemagglutinin protein is a primary target of the measles virus-specific HLA-A2-restricted CD8+ T cell response during measles and after vaccination. J Infect Dis 195:1799–1807

    PubMed  CAS  Google Scholar 

  • Ovsyannikova IG, Dhiman N, Jacobson RM, Vierkant RA, Poland GA (2003) Frequency of measles virus-specific CD4+ and CD8+ T cells in subjects seronegative or highly seropositive for measles vaccine. Clin Diagn Lab Immunol 10:411–416

    PubMed  Google Scholar 

  • Ovsyannikova IG, Jacobson RM, Ryan JE, Vierkant RA, Pankratz VS, Jacobsen SJ, Poland GA (2005a) HLA class II alleles and measles virus-specific cytokine immune response following two doses of measles vaccine. Immunogenetics 56:798–807

    CAS  Google Scholar 

  • Ovsyannikova IG, Jacobson RM, Vierkant RA, Jacobsen SJ, Pankratz VS, Poland GA (2005b) Human leukocyte antigen class II alleles and rubella-specific humoral and cell-mediated immunity following measles-mumps-rubella-II vaccination. J Infect Dis 191:515–519

    CAS  Google Scholar 

  • Ovsyannikova IG, Ryan JE, Jacobson RM, Vierkant RA, Pankratz VS, Poland GA (2006) Human leukocyte antigen and interleukin 2, 10 and 12p40 cytokine responses to measles: is there evidence of the HLA effect? Cytokine 36:173–179

    PubMed  CAS  Google Scholar 

  • Owens S, Harper G, Amuasi J, Offei-Larbi G, Ordi J, Brabin BJ (2006) Placental malaria and immunity to infant measles. Arch Dis Child 91:507–508

    PubMed  CAS  Google Scholar 

  • Palosaari H, Parisien JP, Rodriguez JJ, Ulane CM, Horvath CM (2003) STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77:7635–7644

    PubMed  CAS  Google Scholar 

  • Palumbo P, Hoyt L, Demasio K, Oleske J, Connor E (1992) Population-based study of measles and measles immunization in human immunodeficiency virus-infected children. Pediatr Infect Dis J 11:1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Panum P (1938) Med Classics 3:829–886

    Google Scholar 

  • Papania M, Baughman AL, Lee S, Cheek JE, Atkinson W, Redd SC, Spitalny K, Finelli L,Markowitz L (1999) Increased susceptibility to measles in infants in the United States.Pediatrics 104:e59

    PubMed  CAS  Google Scholar 

  • Paul WE (1989) In: Paul WE (ed) Peripheral T lymphocytes. Fundamental immunology. Raven Press, New York, pp 398–399

    Google Scholar 

  • Paul WE (2003) Fundamental immunology. Lippincott Raven, Philadelphia

    Google Scholar 

  • Permar SR, Moss WJ, Ryon JJ, Monze M, Cutts F, Quinn TC, Griffin DE (2001) Prolonged measles virus shedding in human immunodeficiency virus-infected children, detected by reverse transcriptase-polymerase chain reaction. J Infect Dis 183:532–538

    PubMed  CAS  Google Scholar 

  • Permar SR, Klumpp SA, Mansfield KG, Kim WK, Gorgone DA, Lifton MA, Williams KC,Schmitz JE, Reimann KA, Axthelm MK, Polack FP, Griffin DE, Letvin NL (2003) Role of CD8(+) lymphocytes in control and clearance of measles virus infection of rhesus monkeys. J Virol 77:4396–4400

    PubMed  CAS  Google Scholar 

  • Permar SR, Klumpp SA, Mansfield KG, Carville AA, Gorgone DA, Lifton MA, Schmitz JE,Reimann KA, Polack FP, Griffin DE, Letvin NL (2004) Limited contribution of humoral immunity to the clearance of measles viremia in rhesus monkeys. J Infect Dis 190:998–1005

    PubMed  Google Scholar 

  • Perry RT, Halsey NA (2004) The clinical significance of measles: a review. J Infect Dis 189 [Suppl 1]:S4–S16

    PubMed  Google Scholar 

  • Polack FP, Hoffman SJ, Moss WJ, Griffin DE (2002) Altered synthesis of interleukin-12 and type 1 and type 2 cytokinesin rhesus macaques during measles and atypical measles. J Infect Dis 185:13–19

    PubMed  CAS  Google Scholar 

  • Polack FP, Hoffman SJ, Crujeiras G, Griffin DE (2003) A role for nonprotective complement-fixing antibodies with low avidity for measles virus in atypical measles. Nat Med 9:1209–1213

    PubMed  CAS  Google Scholar 

  • Rand KH, Emmons RW, Merigan TC (1976) Measles in adults. An unforeseen consequence of immunization? JAMA 236:1028–1031

    PubMed  CAS  Google Scholar 

  • Ratnam S, Gadag V, West R, Burris J, Oates E, Stead F, Bouilianne N (1995) Comparison of commercial enzyme immunoassay kits with plaque reduction neutralization test for detection of measles virus antibody. J Clin Microbiol 33:811–815

    PubMed  CAS  Google Scholar 

  • Reiner SL, Sallusto F, Lanzavecchia A (2007) Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science 317:622–625

    PubMed  CAS  Google Scholar 

  • Ridings J, Dinan L, Williams R, Roberton D, Zola H (1998) Somatic mutation of immunoglobulin V(H)6 genes in human infants. Clin Exp Immunol 114:33–39

    PubMed  CAS  Google Scholar 

  • Rudy BJ, Rutstein RM, Pinto-Martin J (1994) Responses to measles immunization in children infected with human immunodeficiency virus. J Pediatr 125:72–74

    PubMed  CAS  Google Scholar 

  • Samb B, Aaby P, Whittle HC, Seck AM, Rahman S, Bennett J, Markowitz L, Simondon F (1995) Serologic status and measles attack rates among vaccinated and unvaccinated children in rural Senegal. Pediatr Infect Dis 14:203–209

    CAS  Google Scholar 

  • Scott S, Cumberland P, Shulman CE, Cousens S, Cohen BJ, Brown DW, Bulmer JN, Dorman EK,Kawuondo K, Marsh K, Cutts F (2005) Neonatal measles immunity in rural Kenya: the influence of HIV and placental malaria infections on placental transfer of antibodies and levels of antibody in maternal and cord serum samples. J Infect Dis 191:1854–1860

    PubMed  Google Scholar 

  • Scott S, Moss WJ, Cousens S, Beeler JA, Audet SA, Mugala N, Quinn TC, Griffin DE, Cutts FT (2007) The influence of HIV-1 exposure and infection on levels of passively acquired antibodies to measles virus in Zambian infants. Clin Infect Dis 45:1417–1424

    PubMed  CAS  Google Scholar 

  • Scott S, Mossong J, Moss WJ, Cutts FT, Cousens S (2008) Predicted impact of the HIV-1 epidemic on measles in developing countries: results from a dynamic age-structured model. Int J Epidemiol 30:356–367

    Google Scholar 

  • Shaffer JA, Bellini WJ, Rota PA (2003) The C protein of measles virus inhibits the type I inter-feron response. Virology 315:389–397

    PubMed  CAS  Google Scholar 

  • Shingai M, Ebihara T, Begum NA, Kato A, Honma T, Matsumoto K, Saito H, Ogura H,Matsumoto M, Seya T (2007) Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. J Immunol 179:6123–6133

    PubMed  CAS  Google Scholar 

  • Siegel MM, Walter TK, Ablin AR (1977) Measles pneumonia in childhood leukemia. Pediatrics 60:38–40

    PubMed  CAS  Google Scholar 

  • Stephenson JR, ter Meulen V (1979) Antigenic relationships between measles and canine distemper viruses: comparison of immune response in animals and humans to individual virus-specific polypeptides. Proc Natl Acad Sci U S A 76:6601–6605

    PubMed  CAS  Google Scholar 

  • Stokes J, Reilly CM, Bunyak EB, Hilleman MR (1961) Immunologic studies of measles. Am J Hyg 74:293–303

    PubMed  Google Scholar 

  • Takeuchi K, Kadota SI, Takeda M, Miyajima N, Nagata K (2003) Measles virus V protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 545:177–182

    PubMed  CAS  Google Scholar 

  • Tapia MD, Sow SO, Medina-Moreno S, Lim Y, Pasetti MF, Kotloff K, Levine MM (2005) Aserosurvey to identify the window of vulnerability to wild-type measles among infants in rural Mali. Am J Trop Med Hyg 73:26–31

    PubMed  Google Scholar 

  • Termeulen V, Stephenson JR, Kreth HW (1983) Subacute sclerosing panencephalitis. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology. Plenum, New York, pp 105–159

    Google Scholar 

  • Thio CL, Thomas DL, Karacki P, Gao X, Marti D, Kaslow RA, Goedert JJ, Hilgartner M, Strathdee SA, Duggal P, O'Brien SJ, Astemborski J, Carrington M (2003) Comprehensive analysis of class I and class II HLA antigens and chronic hepatitis B virus infection. J Virol 77:12083–12087

    PubMed  CAS  Google Scholar 

  • Titanji K, De Milito A, Cagigi A, Thorstensson R, Grutzmeier S, Atlas A, Hejdeman B, Kroon FP, Lopalco L, Nilsson A, Chiodi F (2006) Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection. Blood 108:1580–1587

    PubMed  CAS  Google Scholar 

  • Toyoda M, Ihara T, Nakano T, Ito M, Kamiya H (1999) Expression of interleukin-2 receptor alpha and CD45RO antigen on T lymphocytes cultured with rubella virus antigen, compared with humoral immunity in rubella vaccinees. Vaccine 17:2051–2058

    PubMed  CAS  Google Scholar 

  • van Els CA, Nanan R (2002) T cell responses in acute measles. Viral Immunol 15:435–450

    PubMed  Google Scholar 

  • Van Binnendijk RS, Poelen MCM, Kuijpers KC, Osterhaus ADME, Uytdehaag FGCM (1990) The predominance of CD8+ T cells after infection with measles virus suggests a role for CD8+class I MHC-restricted cytotoxic T lymphocytes (CTL) in recovery from measles. Clonal analyses of human CD8+ class I MHC-restricted CTL. J Immunol 144:2394–2399

    PubMed  Google Scholar 

  • Ward BJ, Johnson RT, Vaisberg A, Jauregui E, Griffin DE (1991) Cytokine production in vitro and the lymphoproliferative defect of natural measles virus infection. Clin Immunol Immunopathol 61:236–248

    PubMed  CAS  Google Scholar 

  • Weibel RE, Buynak EB, McLean AA, Roehm RR, Hilleman MR (1980) Persistence of antibody in human subjects for 7 to 10 years following administration of combined live attenuated measles, mumps, and rubella virus vaccines. Proc Soc Exp Biol Med 165:260–263

    PubMed  CAS  Google Scholar 

  • Wesumperuma HL, Perera AJ, Pharoah PO, Hart CA (1999) The influence of prematurity and low birthweight on transplacental antibody transfer in Sri Lanka. Ann Trop Med Parasitol 93:169–177

    PubMed  CAS  Google Scholar 

  • Whittle HC, Aaby P, Samb B, Cisse B, Kanteh F, Soumare M, Jensen H, Bennett J, Simondon F (1999) Poor serologic responses five to seven years after immunization with high and standard titer measles vaccines. Pediatr Infect Dis J 18:53–57

    PubMed  CAS  Google Scholar 

  • Wolfson LJ, Strebel PM, Gacic-Dobo M, Hoekstra EJ, McFarland JW, Hersh BS (2007) Has the 2005 measles mortality reduction goal been achieved? A natural history modelling study. Lancet 369:191–200

    PubMed  Google Scholar 

  • World Health Organization (1993) Immunological Basis for Immunization Module 7: Measles.WHO/EPI/GEN/98.17, World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2006) WHO AFRO Measles SIA Field Guide. World Health Organization, Geneva

    Google Scholar 

  • Wu VH, McFarland H, Mayo K, Hanger L, Griffin DE, Dhib-Jalbut S (1993) Measles virus-specific cellular immunity in patients with vaccine failure. J Clin Microbiol 31:118–122

    PubMed  CAS  Google Scholar 

  • Yakub I, Lillibridge KM, Moran A, Gonzalez OY, Belmont J, Gibbs RA, Tweardy DJ (2005) Single nucleotide polymorphisms in genes for 2′–5′-oligoadenylate synthetase and RNase L inpatients hospitalized with West Nile virus infection. J Infect Dis 192:1741–1748

    PubMed  CAS  Google Scholar 

  • Zilliox MJ, Parmigiani G, Griffin DE (2006) Gene expression patterns in dendritic cells infected with measles virus compared with other pathogens. Proc Natl Acad Sci U S A 103:3363–3368

    PubMed  CAS  Google Scholar 

  • Zilliox MJ, Moss WJ, Griffin DE (2007) Gene expression changes in peripheral blood mononuclear cells during measles virus infection. Clin Vaccine Immunol 14:918–923

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Naniche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naniche, D. (2009). Human Immunology of Measles Virus Infection. In: Griffin, D.E., Oldstone, M.B.A. (eds) Measles. Current Topics in Microbiology and Immunology, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70617-5_8

Download citation

Publish with us

Policies and ethics