Skip to main content

Current Animal Models: Cotton Rat Animal Model

Cotton Rat

  • Chapter
Measles

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 330))

The cotton rat ( Sigmodon hispidus ) model has proven to be a suitable small animal model for measles virus pathogenesis to fill the niche between tissue culture and studies in macaques. Similar to mice, inbred cotton rats are available in a microbiologically defined quality with an ever-increasing arsenal of reagents and methods available for the study of infectious diseases. Cotton rats replicate measles virus in the respiratory tract and (depending on virus strain) in lymphoid organs. They can be infected with vaccine, wild-type, and recombinant measles viruses and have been used to study viruses with genetic modifications. Other areas of study include efficacy testing of antivirals and vaccines. The cotton rat also has been an informative animal model to investigate measles virus-induced immune suppression and suppression of vaccination by maternal antibodies. In addition, the cotton rat promises to be a useful model for the study of polymicrobial disease (interaction between measles virus and secondary pathogens).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaby P, Jensen T, Hansen H (1988) Trial of high dose Edmonston-Zagreb measles vaccine in Guinea-Bissau: protective efficacy. Lancet 2:809–811

    Article  PubMed  CAS  Google Scholar 

  • Armstrong C (1939) The experimental transmission of poliomyelitis to the eastern cotton rat Sigmodon hispidus hispidus. Public Health Rep 54:1719–1721

    Google Scholar 

  • Avota E, Avots A, Niewiesk S, Kane LP, Bommhardt U, ter Meulen V, Schneider-Sschaulies S (2001) Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 6:725–731

    Article  CAS  Google Scholar 

  • Azazy AA, Devaney E, Chance ML (1994) A PEG-ELISA for the detection of Leishmania dono-vani antigen in circulating immune complexes. Trans Royal Soc Trop Med Hyg 88:62–66

    Article  CAS  Google Scholar 

  • Bayer M, Wenk P (1988) Homologous and crossreacting immune response of the jird and cotton rat against microfilariae of Dipetalomena vitae and Litosomoides carinii (Nematoda Filaroidea). Trop Med Parasit 39:304–308

    CAS  Google Scholar 

  • Blanco JC, Richardson JY, Darnell ME, Rowzee A, Pletneva L, Porter DD, Prince GA (2002) Cytokine and chemokine gene expression after primary and secondary respiratory syncytial virus infection in cotton rats. J Infect Dis 185:1780–1785

    Article  PubMed  CAS  Google Scholar 

  • Blanco JC, Pletneva L, Boukhvalova M, Richardson JY, Harris KA, Prince G (2004) The cotton rat: an underutilized animal model for human infectious diseases can now be exploited using specific reagents to cytokines, chemokines, and interferons. J Interferon Cytokine Res 24:21–28

    Article  CAS  Google Scholar 

  • Boukhvalova MS, Prince GA, Soroush L, Harrigan DC, Vogel SN, Blanco JC (2006) The TLR4 agonist, monophosphoryl lipid A, attenuates the cytokine storm associated with respiratory syncytial virus vaccine-enhanced disease. Vaccine 24:5027–5035

    Article  PubMed  CAS  Google Scholar 

  • Bour H, Peyron E, Gaucherand M, Garrigue JL, Desvignes C, Kaiserlian D, Revillard JP, Nicolas JF (1995) Major histocompatibility complex class I-restricted CD8 + T cells and class II-restricted CD4 + T cells, respectively, mediate and regulate contact sensitivity to dinitrofluor-obenzene. Eur J Immunol 25:3006–3010

    Article  PubMed  CAS  Google Scholar 

  • Brydak L (1990) Studies on adaptation of influenza virus replicated at low temperature. I V. Sensitivity of neuraminidase and hemagglutinin to some proteolytic enzymes, detergents and chemical agents. Acta Microbiol Pol 39:137–147

    PubMed  CAS  Google Scholar 

  • Burgdorfer W, Gage KL (1987) Susceptibility of the hispid cotton rat ( Sigmodon hispidus ) to the Lyme disease spirochete ( Borrelia burgdorferi ). Am J Trop Med Hyg 37:624–628

    PubMed  CAS  Google Scholar 

  • Chen RT, Markowitz LE, Albrecht P, Stewart JA, Mofenson LM, Preblud SR, Orenstein WA (1990) Measles antibody: reevalution of protective titers. J Inf Dis 162:1036–1042

    CAS  Google Scholar 

  • Clark JD (1984) Biology and diseases of other rodents. In: Fox JG, Cohen BJ, Loew FM (eds) Laboratory animal medicine. Academic, Orlando, pp 183–206

    Google Scholar 

  • Combredet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B, McClure H, Feinberg MB, Brahic M, Tangy F (2003) A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 77:11546–11554

    Article  PubMed  CAS  Google Scholar 

  • de Swart RL, Ludlow M, de Witte L, Yanagi Y, van Amerongen G, McQuaid S, Yuksel S, Geijtenbeek TB, Duprex WP, Osterhaus AD (2007) Predominant infection of CD150 + lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3:e178

    Article  PubMed  CAS  Google Scholar 

  • Dreizin RS, Vyshnevetskaia LO, Bagdamian EE, Iankevich OD, Tarasova LB (1971) Experimental RS virus infection of cotton rats. A viral and immunofluorescent study(in Russian). Vopr Virusol 16:670–676

    PubMed  CAS  Google Scholar 

  • Dubois B, Chapat L, Goubier A, Papiernik M, Nicolas JF, Kaiserlian D (2003) Innate CD4 +CD25+ regulatory T cells are required for oral tolerance and inhibition of CD8 + T cells mediating skin inflammation. Blood 102:3295–3301

    Article  PubMed  CAS  Google Scholar 

  • Eichelberger MC, Bauchiero S, Point D, Richter BW, Prince GA, Schuman R (2006) Distinct cellular immune responses following primary and secondary influenza virus challenge in cotton rats. Cell Immunol 243:67–74

    Article  PubMed  CAS  Google Scholar 

  • Elwood RL, Wilson S, Blanco JC, Yim K, Pletneva L, Nikonenko B, Samala R, Joshi S, Hemming VG, Trucksis M (2007) The American cotton rat: a novel model for pulmonary tuberculosis. Tuberculosis 87:145–154

    Article  CAS  Google Scholar 

  • Fennelly GJ, Flynn JAL, ter Meulen V, Liebert UG, Bloom BR (1995) Recombinant Bacille Calmette Guérin priming against measles. J Infect Dis 172:698–705

    PubMed  CAS  Google Scholar 

  • Fooks AR, Jeevarajah D, Lee J, Warnes A, Niewiesk S, ter Meulen V, Stephensom JR, Clegg JCS (1998) Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus proteins: protective immune responses in rodents. J Gen Virol 79:1027–1031

    PubMed  CAS  Google Scholar 

  • Haga T, Murayama N, Shimizu Y, Saito A, Sakamoto T, Morita T, Komase K, Nakayama T, Uchida K, Katayama T, Shinohara A, Koshimoto C, Sato H, Miyata H, Katahira K, Goto Y (2008) Analysis of antibody response by temperature-sensitive measles vaccine strain in the cotton rat model. Comp Immunol Microbiol Infect Dis (in press)

    Google Scholar 

  • Halsey N (1993) Increased mortality following high titer measles vaccines: too much good thing. J Pediatr Infect Dis 12:462–465

    Article  CAS  Google Scholar 

  • Hamelin ME, Yim K, Kuhn KH, Cragin RP, Boukhvalova M, Blanco JC, Prince GA, Boivin G (2005) Pathogenesis of human metapneumovirus lung infection in BALB/c mice and cotton rats. J Virol 79:8894–8903

    Article  PubMed  CAS  Google Scholar 

  • Hassantoufighi A, Oglesbee M, Richter BW, Prince GA, Hemming V, Niewiesk S, Eichelberger MC (2007) Respiratory syncytial virus replication is prolonged by a concomitant allergic response. Clin Exp Immunol 148:218–229

    Article  PubMed  CAS  Google Scholar 

  • Hou S, Hyland L, Ryan KW, Portner A, Doherty PC (1996) Virus-specific CD8 + T-cell memory determined by clonal burst size. Nature 369:652–654

    Article  Google Scholar 

  • Kroeze WK, Tanner CE (1985) Echinococcus multilocularis:responses to infection in cotton rats (Sigmodon hispidus). Int. J Parasitol 15:233–238

    Article  PubMed  CAS  Google Scholar 

  • Langley RJ, Prince GA, Ginsberg HS (1998) HIV type-1 infection of the cotton rat (Sigmodon fulviventer and S. hispidus ). Proc Natl Acad Sci U S A 95:14355–14360

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski G, Zimmerman MN, Denk LL, Porter DD, Prince GA (2002) Herpes simplex type 1 infects and establishes latency in the brain and trigeminal ganglia during primary infection of the lip in cotton rats and mice. Arch Virol 147:167–179

    Article  PubMed  CAS  Google Scholar 

  • Lowery GH (1981) The mammals of Louisiana and its adjacent waters. Louisiana State University Press, Baton Rouge

    Google Scholar 

  • Luhrman A, Tschernig T, Pabst R, Niewiesk S (2005) Improved intranasal immunization with live-attenuated measles virus after co-inoculation of the lipopeptide MALP-2. Vaccine 23:4721–4726

    Article  CAS  Google Scholar 

  • Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. PNAS 101:5598–5603

    Article  PubMed  CAS  Google Scholar 

  • Mähler M, Heidtmann W, Hedrich HJ, Beil W, Gruber A, Niewiesk S, Wagner S (2002) Helicobacter pylori infection induces chronic active gastritis in cotton rats. Gastroenterology 122:A532–A533

    Google Scholar 

  • McChesney MB, Kehrl JH, Valsamakis A, Fauci AS, Oldstone MBA (1987) Measles virus infection of B lymphocytes permits cellular activation but blocks progression through the cell cycle. J Virol 61:3441–3447

    PubMed  CAS  Google Scholar 

  • McChesney MB, Altmann A, Oldstone MBA (1988) Suppression of T lymphocyte function by measles virus is due to cell cycle arrest in G1. J Virol 140:1269–1273

    CAS  Google Scholar 

  • Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    PubMed  CAS  Google Scholar 

  • Moll M, Klenk HD, Herrler G, Maisner A (2001) A single amino acid change in the cytoplasmic domains of measles virus glycoproteins H and F alters targeting, endocytosis, and cell fusion in polarized Madin-Darby canine kidney cells. J Biol Chem 276:17887–17894

    Article  PubMed  CAS  Google Scholar 

  • Moll M, Pfeuffer J, Klenk H-D, Niewiesk S, Maisner A (2004) Polarized glycoprotein targeting affects spread of measles virus in vitro and in vivo. J Gen Virol 85:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Murphy BR, Sotnikov AV, Lawrence LA, Banks SM, Prince GA (1990) Enhanced pulmonary histopathology is observed in cotton rats immunized with formalin-inactivated respiratory syncytial virus (RSV) or purified F glycoprotein and challenged with RSV 3–6 months afterimmunization. Vaccine 8:497–502

    Article  PubMed  CAS  Google Scholar 

  • Murphy TF, Dubovi EJ, Clyde WA (1981) The common cotton rat as an experimental model of human parainfluenza virus type 3 disease. Exp Lung Res 2:97–109

    Article  PubMed  CAS  Google Scholar 

  • Nahmias AJ, Griffith D, Salsbury C, Yoshida K (1967) Thymic aplasia with lymphopenia, plasma cells, and normal immunoglobulins. JAMA 201:729–734

    Article  PubMed  CAS  Google Scholar 

  • Naniche D, Reed SI, Oldstone MBA (1999) Cell cycle arrest during measles virus infection: a G0-like block leads to suppression of retinoblastoma protein expression. J Virol 73:1894–1901

    PubMed  CAS  Google Scholar 

  • Niewiesk S, Germann P-G (2000) Development of neutralizing antibodies correlates with resolution of interstitial pneumonia after measles virus infection in cotton rats. J Exp Anim Sci 40:201–210

    Article  Google Scholar 

  • Niewiesk S, Prince GA (2002) Diversifying animal models: the use of hispid cotton rats ( Sigmodon hispidus ) in infectious diseases. Lab Anim 36:357–372

    Article  PubMed  CAS  Google Scholar 

  • Niewiesk S, Eisenhuth I, Fooks A, Clegg JCS, Schnorr J-J, Schneider-Schaulies S, ter Meulen V (1997) Measles virus-induced immune suppression in the cotton rat ( Sigmodon hispidus) model depends on viral glycoproteins. J Virol 71:7214–7219

    PubMed  CAS  Google Scholar 

  • Niewiesk S, Ohnimus H, Schnorr J-J, Götzelmann M, Schneider-Schaulies S, Jassoy C, ter Meulen V (1999) Measles virus-induced immunosuppression in cotton rats is associated with cell cycle retardation in uninfected lymphocytes. J Gen Virol 80:2023–2029

    PubMed  CAS  Google Scholar 

  • Niewiesk S, Götzelmann M, ter Meulen V (2000) Selective in vivo suppression of T lymphocyte responses in experimental measles virus infection. Proc Natl Acad Sci U S A 74:4652–4657

    Google Scholar 

  • Oliver JH, Chandler FW, James AM, Sanders FH, Hutcheson HJ, Huey LO, McGuire BS, Lane RS (1995) Natural occurrence and characterization of the Lyme spirochete, Borrelia burgdor-feri, in cotton rats ( Sigmodon hispidus ) from Georgia and Florida. J Parasitol 81:30–36

    Article  PubMed  CAS  Google Scholar 

  • Ottolini M, Blanco J, Porter D, Peterson L, Curtis S, Prince G (2003) Combination anti-inflammatory and antiviral therapy of influenza in a cotton rat model. Pediatr Pulmonol 36:290–294

    Article  PubMed  Google Scholar 

  • Ottolini MG, Blanco JC, Eichelberger MC, Porter DD, Pletneva L, Richardson J Y, Prince GA (2005) The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis. J Gen Virol 86:2823–2830

    Article  PubMed  CAS  Google Scholar 

  • Pacini DL, Dubovi EJ, Clyde WA (1984) A new animal model for human respiratory tract disease due to adenovirus. J Infect Dis 150:92–97

    PubMed  CAS  Google Scholar 

  • Pasetti MF, Barry EM, Losonsky G, Singh M, Medina-Moreno SM, Polo JM, Ulmer J, Robinson H, Sztein MB, Levine MM (2003) Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats. J Virol 77:5209–5217

    Article  PubMed  CAS  Google Scholar 

  • Permar SR, Klumpp SA, Mansfield KG, Kim WK, Gorgone DA, Lifton MA, Williams KC, Schmitz JE, Reimann KA, Axthelm MK, Polack FP, Griffin DE, Letvin NL (2003) Role of CD8(+) lymphocytes in control and clearance of measles virus infection of rhesus monkeys. J Virol 77:4396–4400

    Article  PubMed  CAS  Google Scholar 

  • Permar SR, Klumpp SA, Mansfield KG, Carville AA, Gorgone DA, Lifton MA, Schmitz JE, Reimann KA, Polack FP, Griffin DE, Letvin NL (2004) Limited contribution of humoral immunity to the clearance of measles viremia in rhesus monkeys. J Infect Dis 190:998–1005

    Article  PubMed  Google Scholar 

  • Pfeuffer J, Püschel K, ter Meulen V, Schneider-Schaulies J, Niewiesk S (2003) Extent of measles virus spread and immune suppression differentiates between wildtype and vaccine strains in the cotton rat model ( Sigmodon hispidus ). J Virol 77:150–158

    Article  PubMed  CAS  Google Scholar 

  • Pletneva LM, Haller O, Porter DD, Prince GA, Blanco JC (2008) Induction of type I interferons and interferon-inducible Mx genes during respiratory syncytial virus infection and reinfection in cotton rats. J Gen Virol 89:261–270

    Article  PubMed  CAS  Google Scholar 

  • Premenko-Lanier M, Rota PA, Rhodes G, Verhoeven D, Barouch DH, Lerche NW, Letvin NL, Bellini WJ, McChesney MB (2003) DNA vaccination of infants in the presence of maternal antibody: a measles model in the primate. Virology 307:67–75

    Article  PubMed  CAS  Google Scholar 

  • Pueschel K, Tietz A, Carsillo M, Steward M, Niewiesk S (2007) Measles virus-specific CD4 T-cell activity does not correlate with protection against lung infection or viral clearance. J Virol 81:8571–8578

    Article  PubMed  CAS  Google Scholar 

  • Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dötsch C, Christiansen G, Billeter MA (1995) Rescue of measles virus from cloned DNA. EMBO J 14:5773–5784

    PubMed  CAS  Google Scholar 

  • Richter BW, Onuska JM, Niewiesk S, Prince GA, Eichelberger MC (2005) Antigen-dependent proliferation and cytokine induction in respiratory syncytial virus-infected cotton rats reflect the presence of effector-memory T cells. Virology 337:102–110

    Article  PubMed  CAS  Google Scholar 

  • Rytik PG, Kucherov II, Muller WE, Podol'skaia IA, Kruzo M, Duboiskaia GP, Poleshchuk NN (1995) The use of the polymerase chain reaction in modelling HIV infection in animals (in Russian). Zh Mikrobiol Epidemiol Immunobiol 8:86–89

    Google Scholar 

  • Schachtner SK, Rome JJ, Hoyt RF Jr, Newman KD, Virmani R, Dichek DA (1995) In vivo adeno-virus-mediated gene transfer via the pulmonary artery of rats. Circ Res 76:701–709

    PubMed  CAS  Google Scholar 

  • Schlereth B, Germann P-G, ter Meulen V, Niewiesk S (2000a) DNA vaccination with the hemag-glutinin and the fusion proteins, but not the nucleocapsid protein protects against experimental measles virus infection. J Gen Virol 81:1321–1325

    CAS  Google Scholar 

  • Schlereth B, Rose KJ, Buonocore L, ter Meulen V, Niewiesk S (2000b) Successful vaccine-induced seroconversion by single dose immunization in the presence of measles virus specific maternal antibodies. J Virol 74:4652–4657

    Article  CAS  Google Scholar 

  • Schlereth B, Buonocore L, Tietz A, ter Meulen V, Rose JK, Niewiesk S (2003) Successful mucosal immunization of cotton rats in the presence of measles virus-specific antibodies depends on degree of attenuation of vaccine vector and virus dose. J Gen Virol 84:2145–2151

    Article  PubMed  CAS  Google Scholar 

  • Schnorr J-J, Seufert M, Schlender J, Borst J, Johnson ICD, ter Meulen V, Schneider-Schaulies S (1997) Cell cycle arrest rather than apoptosis is associated with measles virus contact-mediated immunosuppression in vitro. J Gen Virol 78:3217–3226

    PubMed  CAS  Google Scholar 

  • Steinbach MM, Duca CJ (1940) Experimental tuberculosis in the cotton rat ( Sigmodon hispidus littoralis ). Proc Soc Exp Biol Med 44:288–290

    Google Scholar 

  • Stertz S, Dittmann J, Blanco JC, Pletneva LM, Haller O, Kochs G (2007) The antiviral potential of interferon-induced cotton rat mx proteins against orthomyxovirus (influenza), rhabdovirus, and bunyavirus. J Interferon Cytokine Res 27:847–855

    Article  PubMed  CAS  Google Scholar 

  • Stittelaar K, Wyatt L, de Swart R, Vo s H, Groen J, van Amerongen G, van Binnendijk R, Rozenblatt S, Moss B, Osterhaus A (2000) Protective immunity in macaques vaccinated with a modified vaccinia virus Ankara-based measles virus vaccine in the presence of passively acquired antibodies. J Virol 74:4236–4243

    Article  PubMed  CAS  Google Scholar 

  • Streif S, Pueschel K, Tietz A, Blanco J, Meulen VT, Niewiesk S (2004) Effector CD8 + T cells are suppressed by measles virus infection during delayed type hypersensitivity reaction. Viral Immunol 17:604–608

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Takeuchi K, Miyajima N, Kobune F, Ami Y, Nagata N, Suzaki Y, Nagai Y, Tashiro M (2000) Recovery of pathogenic measles virus from cloned cDNA. J Virol 74:6643–6647

    Article  PubMed  CAS  Google Scholar 

  • Tober C, Seufert M, Schneider H, Billeter MA, Johnston ICD, Niewiesk S, ter Meulen V, Schneider-Schaulies S (1998) Expression of measles virus V protein is associated with tran-scriptional control and pathogenicity. J Virol 72:8124–8132

    PubMed  CAS  Google Scholar 

  • van Binnendijk RS, Poelen MCM, Kuijpers KC, Osterhaus ADME, Uytdehaag FGCM (1990) The predominance of CD8 T cells after infection with measles virus suggests a role for CD8 class I MHC-restricted cytotoxic T lymphocytes (CTL) in recovery from measles. J Immunol 144:2394–2399

    PubMed  Google Scholar 

  • van Binnendijk RS, Poelen MCM, van Amerongen G, de Vries P, Osterhaus ADME (1997) Protective immunity in macaques vaccinated with live attenuated, recombinant, and subunit measles vaccines in the presence of passively acquired antibodies. J Infect Dis 175:524–532

    PubMed  Google Scholar 

  • Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245

    Article  PubMed  CAS  Google Scholar 

  • Weidinger G, Ohlmann M, Schlereth B, Sutter G, Niewiesk S (2001) Vaccination with recom-binant modified vaccinia virus Ankara protects against measles virus infection in the mouse and cotton rat model. Vaccine 19:2764–2768

    Article  PubMed  CAS  Google Scholar 

  • Williams JV, Tollefson SJ, Johnson JE, Crowe JE Jr (2005) The cotton rat ( Sigmodon hispidus) is a permissive small animal model of human metapneumovirus infection, pathogenesis, and protective immunity. J Virol 79:10944–10951

    Article  PubMed  CAS  Google Scholar 

  • Wong-Chew RM, Islas-Romero R, Garcia-Garcia ML, Beeler JA, Audet S, Santos-Preciado JI, Gans H, Lew-Yasukawa L, Maldonado YA, Arvin AM, Valdespino-Gomez JL (2004) Induction of cellular and humoral immunity after aerosol or subcutaneous administration of Edmonston-Zagreb measles vaccine as a primary dose to 12-month-old children. J Infect Dis 189:254–257

    Article  PubMed  Google Scholar 

  • Wyde PR, Ambrosi MW, Voss TG, Meyer HL, Gilbert BF (1992) Measles virus replication in lungs of hispid cotton rats after intranasal inoculation. Proc Soc Exp Biol Med 201:80–87

    PubMed  CAS  Google Scholar 

  • Wyde PR, Moore-Poveda DK, Daley NJ, Oshitani H (1999) Replication of clinical measles virus strains in hispid cotton rats. Proc Soc Exp Biol Med 221:53–62

    Article  PubMed  CAS  Google Scholar 

  • Wyde PR, Moore-Poveda DK, De Clercq E, Neyts J, Matsuda A, Minakawa N, Guzman E, Gilbert BE (2000a) Use of cotton rats to evaluate the efficacy of antivirals in treatment of measles virus infections. Antimicrob Agents Chemother 44:1146–1152

    Article  CAS  Google Scholar 

  • Wyde PR, Stittelaar KJ, Osterhaus ADME, Guzman E, Gilbert BE (2000b) Use of cotton rats for preclinical evaluation of measles vaccines. Vaccine 19:42–53

    Article  CAS  Google Scholar 

  • Wyde PR, Chetty SN, Jewell AM, Schoonover SL, Piedra PA (2005) Development of a cotton rat-human metapneumovirus (hMPV) model for identifying and evaluating potential hMPV antivirals and vaccines. Antiviral Res 2005:57–66

    Article  CAS  Google Scholar 

  • Yim KC, Carroll CJ, Tuyama A, Cheshenko N, Carlucci MJ, Porter DD, Prince GA, Herold BC (2005) The cotton rat provides a novel model to study genital herpes infection and to evaluate preventive strategies. J Virol 79:14632–14639

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Rota P, Wyatt L, Tamin A, Rozenblatt S, Lerche N, Moss B, Bellini W, McChesney M (2000) Evaluation of recombinant vaccinia virus—measles vaccines in infant rhesus macaques with preexisting measles antibody. Virology 276:202–213

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Niewiesk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niewiesk, S. (2009). Current Animal Models: Cotton Rat Animal Model. In: Griffin, D.E., Oldstone, M.B.A. (eds) Measles. Current Topics in Microbiology and Immunology, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70617-5_5

Download citation

Publish with us

Policies and ethics