Skip to main content

Measles Virus-Induced Immunosuppression

  • Chapter
Measles

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 330))

Immunosuppression is the major cause of infant death associated with acute measles and therefore of substantial clinical importance. Major hallmarks of this generalized modulation of immune functions are (1) lymphopenia, (2) a prolonged cytokine imbalance consistent with suppression of cellular immunity to secondary infections, and (3) silencing of peripheral blood lymphocytes, which cannot expand in response to ex vivo stimulation. Lymphopenia results from depletion, which can occur basically at any stage of lymphocyte development, and evidently, expression of the major MV receptor CD150 plays an important role in targeting these cells. Virus transfer to T cells is thought to be mediated by dendritic cells (DCs), which are considered central to the induction of T cell silencing and functional skewing. As a consequence of MV interaction, viability and functional differentiation of DCs and thereby their expression pattern of co-stimulatory molecules and soluble mediators are modulated. Moreover, MV proteins expressed by these cells actively silence T cells by interfering with signaling pathways essential for T cell activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addae MM, Komada Y, Zhang XL, Sakurai M (1995) Immunological unresponsiveness and apop-totic cell death of T cells in measles virus infection. Acta Paediatr Jpn 37:308–314

    PubMed  CAS  Google Scholar 

  • Addae MM, Komada Y, Taniguchi K, Kamiya T, Osei-Kwasi M et al (1998) Surface marker patterns of T cells and expression of interleukin-2 receptor in measles infection. Acta Paediatr Jpn 40:7–13

    PubMed  CAS  Google Scholar 

  • Arneborn P, Biberfeld G, Forsgren M, von Stedingk LV (1983) Specific and non-specific B cell activation in measles and varicella. Clin Exp Immunol 51:165–172

    PubMed  CAS  Google Scholar 

  • Arrieumerlou C, Meyer T (2005) A local coupling model and compass parameter for eukaryotic chemotaxis. Dev Cell 8:215–227

    PubMed  CAS  Google Scholar 

  • Asselin-Paturel C, Trinchieri G (2005) Production of type I interferons: plasmacytoid dendritic cells and beyond. J Exp Med 202:461–465

    PubMed  CAS  Google Scholar 

  • Astier A, Trescol-Biemont MC, Azocar O, Lamouille B, Rabourdin-Combe C (2000) Cutting edge: CD46, a new costimulatory molecule for T cells, that induces p120CBL and LAT phos-phorylation. J Immunol 164:6091–6095

    PubMed  CAS  Google Scholar 

  • Atabani SF, Byrnes AA, Jaye A, Kidd IM, Magnusen AF et al (2001) Natural measles causes prolonged suppression of interleukin-12 production. J Infect Dis 184:1–9

    PubMed  CAS  Google Scholar 

  • Aversa G, Carballido J, Punnonen J, Chang CC, Hauser T et al (1997) SLAM and its role in T cell activation and Th cell responses. Immunol Cell Biol 75:202–205

    PubMed  CAS  Google Scholar 

  • Avota E, Avots A, Niewiesk S, Kane LP, Bommhardt U et al (2001) Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7:725–731

    PubMed  CAS  Google Scholar 

  • Avota E, Muller N, Klett M, Schneider-Schaulies S (2004) Measles virus interacts with and alters signal transduction in T-cell lipid rafts. J Virol 78:9552–9559

    PubMed  CAS  Google Scholar 

  • Avota E, Harms H, Schneider-Schaulies S (2006) Measles virus induces expression of SIP110, a constitutively membrane clustered lipid phosphatase, which inhibits T cell proliferation. Cell Microbiol 8:1826–1839

    PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673): 245–252

    PubMed  CAS  Google Scholar 

  • Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J et al (2002) Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76:8729–8736

    PubMed  CAS  Google Scholar 

  • Black FL, Berman LL, Borgono JM, Capper RA, Carvalho AA et al (1986) Geographic variation in infant loss of maternal measles antibody and in prevalence of rubella antibody. Am J Epidemiol 124:442–452

    PubMed  CAS  Google Scholar 

  • Borrow P, Oldstone MB (1995) Measles virus-mononuclear cell interactions. Curr Top Microbiol Immunol 191:85–100

    PubMed  CAS  Google Scholar 

  • Browning MB, Woodliff JE, Konkol MC, Pati NT, Ghosh S et al (2004) The T cell activation marker CD150 can be used to identify alloantigen-activated CD4(+)25+ regulatory T cells. Cell Immunol 227:129–139

    PubMed  CAS  Google Scholar 

  • Burns S, Hardy SJ, Buddle J, Yong KL, Jones GE et al (2004) Maturation of DC is associated with changes in motile characteristics and adherence. Cell Motil Cytoskeleton 57:118–132

    PubMed  Google Scholar 

  • Cacciotti P, Barbone D, Porta C, Altomare DA, Testa JR et al (2005) SV40-dependent AKT activity drives mesothelial cell transformation after asbestos exposure. Cancer Res 65:5256– 5262

    PubMed  CAS  Google Scholar 

  • Cameron P, Pope M, Granelli-Piperno A, Steinman RM (1996) Dendritic cells and the replication of HIV-1. J Leukoc Biol 59:158–171

    PubMed  CAS  Google Scholar 

  • Carsillo T, Zhang X, Vasconcelos D, Niewiesk S, Oglesbee M (2006) A single codon in the nucleocapsid protein C terminus contributes to in vitro and in vivo fitness of Edmonston measles virus. J Virol 80:2904–2912

    PubMed  CAS  Google Scholar 

  • Condack C, Grivel JC, Devaux P, Margolis L, Cattaneo R (2007) Measles virus vaccine attenuation: suboptimal infection of lymphatic tissue and tropism alteration. J Infect Dis 196:541–549

    PubMed  CAS  Google Scholar 

  • Dawson CW, Tramountanis G, Eliopoulos AG, Young LS (2003) Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278:3694–3704

    PubMed  CAS  Google Scholar 

  • de Swart RL, Ludlow M, de Witte L, Yanagi Y, van Amerongen G et al (2007) Predominant infection of CD150(+) lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3:e178

    PubMed  Google Scholar 

  • de Witte L, Abt M, Schneider-Schaulies S, van Kooyk Y, Geijtenbeek TB (2006) Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80:3477–3486

    PubMed  Google Scholar 

  • Dollimore N, Cutts F, Binka FN, Ross DA, Morris SS et al (1997) Measles incidence, case fatality, and delayed mortality in children with or without vitamin A supplementation in rural Ghana. Am J Epidemiol 146:646–654

    PubMed  CAS  Google Scholar 

  • Dorig RE, Marcil A, Chopra A, Richardson CD (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305

    PubMed  CAS  Google Scholar 

  • Dubois B, Lamy PJ, Chemin K, Lachaux A, Kaiserlian D (2001) Measles virus exploits dendritic cells to suppress CD4+ T-cell proliferation via expression of surface viral glycoproteins independently of T-cell trans-infection. Cell Immunol 214:173–183

    PubMed  CAS  Google Scholar 

  • Dunster LM, Schneider-Schaulies J, Loffler S, Lankes W, Schwartz-Albiez R et al (1994) Moesin: a cell membrane protein linked with susceptibility to measles virus infection. Virology 198:265–274

    PubMed  CAS  Google Scholar 

  • Ebihara T, Masuda H, Akazawa T, Shingai M, Kikuta H et al (2007) Induction of NKG2D ligands on human dendritic cells by TLR ligand stimulation and RNA virus infection. Int Immunol 19:1145–1155

    PubMed  CAS  Google Scholar 

  • Engelking O, Fedorov LM, Lilischkis R, ter Meulen V, Schneider-Schaulies S (1999) Measles virus-induced immunosuppression in vitro is associated with deregulation of G1 cell cycle control proteins. J Gen Virol 80:1599–1608

    PubMed  CAS  Google Scholar 

  • Erlenhoefer C, Wurzer WJ, Loffler S, Schneider-Schaulies S, ter Meulen V et al (2001) CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75:4499–4505

    PubMed  CAS  Google Scholar 

  • Esolen LM, Ward BJ, Moench TR, Griffin DE (1993) Infection of monocytes during measles. J Infect Dis 168:47–52

    PubMed  CAS  Google Scholar 

  • Forthal DN, Aarnaes S, Blanding J, de la Maza L, Tilles JG (1992) Degree and length of viremia in adults with measles. J Infect Dis 166:421–424

    PubMed  CAS  Google Scholar 

  • Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan MC, Liu YJ et al (1997) Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186:813–823

    PubMed  CAS  Google Scholar 

  • Fujinami RS, Sun X, Howell JM, Jenkin JC, Burns JB (1998) Modulation of immune system function by measles virus infection: role of soluble factor and direct infection. J Virol 72:9421–9427

    PubMed  CAS  Google Scholar 

  • Geier SJ, Algate PA, Carlberg K, Flowers D, Friedman C et al (1997) The human SHIP gene is differentially expressed in cell lineages of the bone marrow and blood. Blood 89:1876–1885

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC et al (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, van Kooyk Y (2003a) DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr Top Microbiol Immunol 276:31–54

    CAS  Google Scholar 

  • Geijtenbeek TB, van Kooyk Y (2003b) Pathogens target DC-SIGN to influence their fate DC-SIGN functions as a pathogen receptor with broad specificity. Apmis 111:698–714

    CAS  Google Scholar 

  • Griffin DE (1995) Immune responses during measles virus infection. Curr Top Microbiol Immunol 191:117–134

    PubMed  CAS  Google Scholar 

  • Griffin DE, Ward BJ (1993) Differential CD4 T cell activation in measles. J Infect Dis 168:275–281

    PubMed  CAS  Google Scholar 

  • Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y et al (2007) C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26:605–616

    PubMed  CAS  Google Scholar 

  • Grosjean I, Caux C, Bella C, Berger I, Wild F et al (1997) Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 186:801–812

    PubMed  CAS  Google Scholar 

  • Hahm B, Arbour N, Naniche D, Homann D, Manchester M et al (2003) Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. J Virol 77:3505–3515

    PubMed  CAS  Google Scholar 

  • Hahm B, Arbour N, Oldstone MB (2004) Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology 323:292–302

    PubMed  CAS  Google Scholar 

  • Heaney J, Barrett T, Cosby SL (2002) Inhibition of in vitro leukocyte proliferation by morbillivi-ruses. J Virol 76:3579–3584

    PubMed  CAS  Google Scholar 

  • Helin E, Salmi AA, Vanharanta R, Vainionpaa (1999) Measles virus replication in cells of myelo-monocytic lineage is dependent on cellular differentiation stage. Virology 253:35–42

    PubMed  CAS  Google Scholar 

  • Herschke F, Plumet S, Duhen T, Azocar O, Druelle J et al (2007) Cell—cell fusion induced by measles virus amplifies the type I interferon response. J Virol 81:12859–12871

    PubMed  CAS  Google Scholar 

  • Hirano A, Yang Z, Katayama Y, Korte-Sarfaty J, Wong TC (1999) Human CD46 enhances nitric oxide production in mouse macrophages in response to measles virus infection in the presence of gamma interferon: dependence on the CD46 cytoplasmic domains. J Virol 73:4776–4785

    PubMed  CAS  Google Scholar 

  • Hsu EC, Iorio C, Sarangi F, Khine AA, Richardson CD (2001) CDw150 (SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9–21

    PubMed  CAS  Google Scholar 

  • Hussey GD, Goddard EA, Hughes J, Ryon JJ, Kerran M et al (1996) The effect of Edmonston-Zagreb and Schwarz measles vaccines on immune response in infants. J Infect Dis 173:1320–1326

    PubMed  CAS  Google Scholar 

  • Jolly C, Mitar I, Sattentau QJ (2007) Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells. J Virol 81:13916–13921

    PubMed  CAS  Google Scholar 

  • Kaiserlian D, Grosjean I, Caux C (1997) Infection of human dendritic cells by measles virus induces immune suppression. Adv Exp Med Biol 417:421–423

    PubMed  CAS  Google Scholar 

  • Karp CL, Wysocka M, Wahl LM, Ahearn JM, Cuomo PJ et al (1996) Mechanism of suppression of cell-mediated immunity by measles virus. Science 273(5272):228–231

    PubMed  CAS  Google Scholar 

  • Katz M (1995) Clinical spectrum of measles. Curr Top Microbiol Immunol 191:1–12

    PubMed  CAS  Google Scholar 

  • Kemper C, Chan AC, Green JM, Brett KA, Murphy KM et al (2003) Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421(6921): 388–392

    PubMed  CAS  Google Scholar 

  • Kemper C, Verbsky JW, Price JD, Atkinson JP (2005) T-cell stimulation and regulation: with complements from CD46. Immunol Res 32:31–44

    PubMed  CAS  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    PubMed  CAS  Google Scholar 

  • Klagge IM, ter Meulen V, Schneider-Schaulies S (2000) Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. Eur J Immunol 30:2741–2750

    PubMed  CAS  Google Scholar 

  • Klagge IM, Abt M, Fries B, Schneider-Schaulies S (2004) Impact of measles virus dendritic-cell infection on Th-cell polarization in vitro. J Gen Virol 85:3239–3247

    PubMed  CAS  Google Scholar 

  • Kobune F, Takahashi H, Terao K, Ohkawa T, Ami Y et al (1996) Nonhuman primate models of measles. Lab Anim Sci 46:315–320

    PubMed  CAS  Google Scholar 

  • Kruse M, Meinl E, Henning G, Kuhnt C, Berchtold S et al (2001) Signaling lymphocytic activation molecule is expressed on mature CD83+ dendritic cells and is up-regulated by IL-1 beta. J Immunol 167:1989–1995

    PubMed  CAS  Google Scholar 

  • Laine D, Trescol-Biemont MC, Longhi S, Libeau G, Marie JC et al (2003) Measles virus (MV) nucleoprotein binds to a novel cell surface receptor distinct from FcgammaRII via its C-termi-nal domain: role in MV-induced immunosuppression. J Virol 77:11332–11346

    PubMed  CAS  Google Scholar 

  • Laine D, Bourhis JM, Longhi S, Flacher M, Cassard L et al (2005) Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL-NR and NCORE-FcgammaRIIB1 interactions, respectively. J Gen Virol 86:1771–1784

    PubMed  CAS  Google Scholar 

  • Lennon JL, Black FL (1986) Maternally derived measles immunity in era of vaccine-protected mothers. J Pediatr 108:671–676

    PubMed  CAS  Google Scholar 

  • Makhortova NR, Askovich P, Patterson CE, Gechman LA, Gerard NP et al (2007) Neurokinin-1 enables measles virus trans-synaptic spread in neurons. Virology 362:235–244

    PubMed  CAS  Google Scholar 

  • Manchester M, Smith KA, Eto DS, Perkin HB, Torbett BE (2002) Targeting and hematopoietic suppression of human CD34+ cells by measles virus. J Virol 76:6636–6642

    PubMed  CAS  Google Scholar 

  • Marie JC, Kehren J, Trescol-Biemont MC, Evlashev A, Valentin H et al (2001) Mechanism of measles virus-induced suppression of inflammatory immune responses. Immunity 14:69–79

    PubMed  CAS  Google Scholar 

  • Marie JC, Astier AL, Rivailler P, Rabourdin-Combe C, Wild TF et al (2002) Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 3:659–666

    PubMed  CAS  Google Scholar 

  • Marie JC, Saltel F, Escola JM, Jurdic P, Wild TF et al (2004) Cell surface delivery of the measles virus nucleoprotein: a viral strategy to induce immunosuppression. J Virol 78:11952–11961

    PubMed  CAS  Google Scholar 

  • McChesney MB, Fujinami RS, Lerche NW, Marx PA, Oldstone MB (1989) Virus-induced immu-nosuppression: infection of peripheral blood mononuclear cells and suppression of immu-noglobulin synthesis during natural measles virus infection of rhesus monkeys. J Infect Dis 159:757–760

    PubMed  CAS  Google Scholar 

  • McChesney MB, Miller CJ, Rota PA, Zhu YD, Antipa L et al (1997) Experimental measles. I. Pathogenesis in the normal and the immunized host. Virology 233:74–84

    PubMed  CAS  Google Scholar 

  • Mikhalap SV, Shlapatska LM, Yurchenko OV, Yurchenko M Y, Berdova GG et al (2004) The adaptor protein SH2D1A regulates signaling through CD150 (SLAM) in B cells. Blood 104:4063–4070

    PubMed  CAS  Google Scholar 

  • Mills KH (2004) Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 4:841–855

    PubMed  CAS  Google Scholar 

  • Minagawa H, Tanaka K, Ono N, Tatsuo H, Yanagi Y (2001) Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82:2913–2917

    PubMed  CAS  Google Scholar 

  • Moss WJ, Ryon JJ, Monze M, Griffin DE (2002) Differential regulation of interleukin (IL)-4, IL-5, and IL-10 during measles in Zambian children. J Infect Dis 186:879–887

    PubMed  CAS  Google Scholar 

  • Mrkic B, Pavlovic J, Rulicke T, Volpe P, Buchholz CJ et al (1998) Measles virus spread and pathogenesis in genetically modified mice. J Virol 72:7420–7427

    PubMed  CAS  Google Scholar 

  • Mrkic B, Odermatt B, Klein MA, Billeter MA, Pavlovic J et al (2000) Lymphatic dissemination and comparative pathology of recombinant measles viruses in genetically modified mice. J Virol 74:1364–1372

    PubMed  CAS  Google Scholar 

  • Muller N, Avota E, Schneider-Schaulies J, Harms H, Krohne G et al (2006) Measles virus contact with T cells impedes cytoskeletal remodeling associated with spreading, polarization, and CD3 clustering. Traffic 7:849–858

    PubMed  Google Scholar 

  • Nanan R, Chittka B, Hadam M, Kreth HW (1999) Measles virus infection causes transient depletion of activated T cells from peripheral circulation. J Clin Virol 12:201–210

    PubMed  CAS  Google Scholar 

  • Naniche D, Reed SI, Oldstone MB (1999) Cell cycle arrest during measles virus infection: a G0-like block leads to suppression of retinoblastoma protein expression. J Virol 73:1894–1901

    PubMed  CAS  Google Scholar 

  • Naniche D, Yeh A, Eto D, Manchester M, Friedman RM et al (2000) Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of alpha/beta inter-feron production. J Virol 74:7478–7484

    PubMed  CAS  Google Scholar 

  • Nejmeddine M, Barnard AL, Tanaka Y, Taylor GP, Bangham CR (2005) Human T-lymphotropic virus, type 1, tax protein triggers microtubule reorientation in the virological synapse. J Biol Chem 280:29653–29660

    PubMed  CAS  Google Scholar 

  • Niewiesk S (1999) Cotton rats ( Sigmodon hispidus ): an animal model to study the pathogenesis of measles virus infection. Immunol Lett 65:47–50

    PubMed  CAS  Google Scholar 

  • Niewiesk S, Eisenhuth I, Fooks A, Clegg JC, Schnorr JJ et al (1997) Measles virus-induced immune suppression in the cotton rat ( Sigmodon hispidus ) model depends on viral glycopro-teins. J Virol 71:7214–7219

    PubMed  CAS  Google Scholar 

  • Niewiesk S, Ohnimus H, Schnorr JJ, Gotzelmann M, Schneider-Schaulies S et al (1999) Measles virus-induced immunosuppression in cotton rats is associated with cell cycle retardation in uninfected lymphocytes. J Gen Virol 80:2023–2029

    PubMed  CAS  Google Scholar 

  • Nozawa Y, Ono N, Abe M, Sakuma H, Wakasa H (1994) An immunohistochemical study of Warthin-Finkeldey cells in measles. Pathol Int 44:442–447

    PubMed  CAS  Google Scholar 

  • Ohgimoto S, Ohgimoto K, Niewiesk S, Klagge IM, Pfeuffer J et al (2001) The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro. J Gen Virol 82:1835–1844

    PubMed  CAS  Google Scholar 

  • Ohgimoto K, Ohgimoto S, Ihara T, Mizuta H, Ishido S et al (2007) Difference in production of infectious wild-type measles and vaccine viruses in monocyte-derived dendritic cells. Virus Res 123:1–8

    PubMed  CAS  Google Scholar 

  • Ohno S, Ono N, Seki F, Takeda M, Kura S et al (2007) Measles virus infection of SLAM (CD150) knockin mice reproduces tropism and immunosuppression in human infection. J Virol 81: 1650–1659

    PubMed  CAS  Google Scholar 

  • Okada H, Kobune F, Sato TA, Kohama T, Takeuchi Y et al (2000) Extensive lymphopenia due to apoptosis of uninfected lymphocytes in acute measles patients. Arch Virol 145:905–920

    PubMed  CAS  Google Scholar 

  • Okada H, Sato TA, Katayama A, Higuchi K, Shichijo K et al (2001) Comparative analysis of host responses related to immunosuppression between measles patients and vaccine recipients with live attenuated measles vaccines. Arch Virol 146:859–874

    PubMed  CAS  Google Scholar 

  • Oldstone MB, Dales S, Tishon A, Lewicki H, Martin L (2005) A role for dual viral hits in causation of subacute sclerosing panencephalitis. J Exp Med 202:1185–1190

    PubMed  CAS  Google Scholar 

  • Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H et al (2001) Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401

    PubMed  CAS  Google Scholar 

  • Permar SR, Moss WJ, Ryon JJ, Douek DC, Monze M et al (2003) Increased thymic output during acute measles virus infection. J Virol 77:7872–7879

    PubMed  CAS  Google Scholar 

  • Pfeuffer J, Puschel K, Meulen V, Schneider-Schaulies J, Niewiesk S (2003) Extent of measles virus spread and immune suppression differentiates between wild-type and vaccine strains in the cotton rat model ( Sigmodon hispidus ). J Virol 77:150–158

    PubMed  CAS  Google Scholar 

  • Pope M, Betjes MG, Romani N, Hirmand H, Hoffman L et al (1995) Dendritic cell-T cell conjugates that migrate from normal human skin are an explosive site of infection for HIV-1. Adv Exp Med Biol 378:457–460

    PubMed  CAS  Google Scholar 

  • Ravanel K, Castelle C, Defrance T, Wild TF, Charron D et al (1997) Measles virus nucleocapsid protein binds to FcgammaRII and inhibits human B cell antibody production. J Exp Med 186:269–278

    PubMed  CAS  Google Scholar 

  • Rethi B, Gogolak P, Szatmari I, Veres A, Erdos E et al (2006) SLAM/SLAM interactions inhibit CD40-induced production of inflammatory cytokines in monocyte-derived dendritic cells. Blood 107:2821–2829

    PubMed  CAS  Google Scholar 

  • Ryon JJ, Moss WJ, Monze M, Griffin DE (2002) Functional and phenotypic changes in circulating lymphocytes from hospitalized Zambian children with measles. Clin Diagn Lab Immunol 9:994–1003

    PubMed  Google Scholar 

  • Sanchez-Lanier M, Guerin P, McLaren LC, Bankhurst AD (1988) Measles virus-induced suppression of lymphocyte proliferation. Cell Immunol 116:367–381

    PubMed  CAS  Google Scholar 

  • Sanchez-Madrid F, del Pozo MA (1999) Leukocyte polarization in cell migration and immune interactions. EMBO J 18:501–511

    PubMed  CAS  Google Scholar 

  • Schlender J, Schnorr JJ, Spielhoffer P, Cathomen T, Cattaneo R et al (1996) Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc Natl Acad Sci U S A 93:13194–13199

    PubMed  CAS  Google Scholar 

  • Schlender J, Hornung V, Finke S, Gunthner-Biller M, Marozin S et al (2005) Inhibition of toll-like receptor 7- and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. J Virol 79:5507–5515

    PubMed  CAS  Google Scholar 

  • Schneider-Schaulies J, Dunster LM, Schwartz-Albiez R, Krohne G, ter Meulen V (1995) Physical association of moesin and CD46 as a receptor complex for measles virus. J Virol 69:2248– 2256

    PubMed  CAS  Google Scholar 

  • Schneider-Schaulies J, Schnorr JJ, Schlender J, Dunster LM, Schneider-Schaulies S et al (1996) Receptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus-infected cells. J Virol 70:255–263

    PubMed  CAS  Google Scholar 

  • Schneider-Schaulies J, ter Meulen V, Schneider-Schaulies S (2001) Measles virus interactions with cellular receptors: consequences for viral pathogenesis. J Neurovirol 7:391–399

    PubMed  CAS  Google Scholar 

  • Schneider-Schaulies S, Dittmer U (2006) Silencing T cells or T-cell silencing: concepts in virus-induced immunosuppression. J Gen Virol 87:1423–1438

    PubMed  CAS  Google Scholar 

  • Schneider-Schaulies S, ter Meulen V (2002) Measles virus and immunomodulation: molecular bases and perspectives. Expert Rev Mol Med 4:1–18

    PubMed  Google Scholar 

  • Schneider-Schaulies S, Kreth HW, Hofmann G, Billeter M, Ter Meulen V (1991) Expression of measles virus RNA in peripheral blood mononuclear cells of patients with measles, SSPE, and autoimmune diseases. Virology 182:703–711

    PubMed  CAS  Google Scholar 

  • Schnorr JJ, Dunster LM, Nanan R, Schneider-Schaulies J, Schneider-Schaulies S et al (1995) Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. Eur J Immunol 25:976–984

    PubMed  CAS  Google Scholar 

  • Schnorr JJ, Seufert M, Schlender J, Borst J, Johnston IC et al (1997a) Cell cycle arrest rather than apoptosis is associated with measles virus contact-mediated immunosuppression in vitro. J Gen Virol 78:3217–3226

    CAS  Google Scholar 

  • Schnorr JJ, Xanthakos S, Keikavoussi P, Kampgen E, ter Meulen V et al (1997b) Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immu-nosuppression. Proc Natl Acad Sci U S A 94:5326–5331

    CAS  Google Scholar 

  • Servet-Delprat C, Vidalain PO, Bausinger H, Manie S, Le Deist F et al (2000) Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J Immunol 164:1753–1760

    PubMed  CAS  Google Scholar 

  • Shingai M, Inoue N, Okuno T, Okabe M, Akazawa T et al (2005) Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection. J Immunol 175:3252–3261

    PubMed  CAS  Google Scholar 

  • Shingai M, Ebihara T, Begum NA, Kato A, Honma T et al (2007) Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. J Immunol 179:6123–6133

    PubMed  CAS  Google Scholar 

  • Shishkova Y, Harms H, Krohne G, Avota E, Schneider-Schaulies S (2007) Immune synapses formed with measles virus-infected dendritic cells are unstable and fail to sustain T cell activation. Cell Microbiol 9:1974–1986

    PubMed  CAS  Google Scholar 

  • Shutt DC, Daniels KJ, Carolan EJ, Hill AC, Soll DR (2000) Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil Cytoskeleton 46:200–221

    PubMed  CAS  Google Scholar 

  • Sidorenko SP, Clark EA (2003) The dual-function CD150 receptor subfamily: the viral attraction. Nat Immunol 4:19–24

    PubMed  CAS  Google Scholar 

  • Steineur MP, Grosjean I, Bella C, Kaiserlian D (1998) Langerhans cells are susceptible to measles virus infection and actively suppress T cell proliferation. Eur J Dermatol 8:413–420

    PubMed  CAS  Google Scholar 

  • Steinman RM (2003) The control of immunity and tolerance by dendritic cell. Pathol Biol (Paris) 51:59–60

    CAS  Google Scholar 

  • Steinman RM, Pack M, Inaba K (1997) Dendritic cell development and maturation. Adv Exp Med Biol 417:1–6

    PubMed  CAS  Google Scholar 

  • Sun X, Burns JB, Howell JM, Fujinami RS (1998) Suppression of antigen-specific T cell proliferation by measles virus infection: role of a soluble factor in suppression. Virology 246:24–33

    PubMed  CAS  Google Scholar 

  • Tamashiro VG, Perez HH, Griffin DE (1987) Prospective study of the magnitude and duration of changes in tuberculin reactivity during uncomplicated and complicated measles. Pediatr Infect Dis J 6:451–454

    Article  PubMed  CAS  Google Scholar 

  • Tanabe M, Kurita-Taniguchi M, Takeuchi K, Takeda M, Ayata M et al (2003) Mechanism of up-regulation of human Toll-like receptor 3 secondary to infection of measles virus-attenuated strains. Biochem Biophys Res Commun 311:39–48

    PubMed  CAS  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406(6798):893–897

    PubMed  CAS  Google Scholar 

  • tenOever BR, Servant MJ, Grandvaux N, Lin R, Hiscott J (2002) Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 76:3659–3669

    PubMed  CAS  Google Scholar 

  • Valentin H, Azocar O, Horvat B, Williems R, Garrone R et al (1999) Measles virus infection induces terminal differentiation of human thymic epithelial cells. J Virol 73:2212–2221

    PubMed  CAS  Google Scholar 

  • Valsamakis A, Auwaerter PG, Rima BK, Kaneshima H, Griffin DE (1999) Altered virulence of vaccine strains of measles virus after prolonged replication in human tissue. J Virol 73:8791–8797

    PubMed  CAS  Google Scholar 

  • van Kooyk Y, Geijtenbeek TB (2003) DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3:697–709

    PubMed  Google Scholar 

  • Vidalain PO, Azocar O, Lamouille B, Astier A, Rabourdin-Combe C et al (2000) Measles virus induces functional TRAIL production by human dendritic cells. J Virol 74:556–559

    Article  PubMed  CAS  Google Scholar 

  • Vidalain PO, Azocar O, Rabourdin-Combe C, Servet-Delprat C (2001a) Measle virus-infected dendritic cells develop immunosuppressive and cytotoxic activities. Immunobiology 204:629–638

    CAS  Google Scholar 

  • Vidalain PO, Azocar O, Yagita H, Rabourdin-Combe C, Servet-Delprat C (2001b) Cytotoxic activity of human dendritic cells is differentially regulated by double-stranded RNA and CD40 ligand. J Immunol 167:3765–3772

    CAS  Google Scholar 

  • Wang N, Satoskar A, Faubion W, Howie D, Okamoto S et al (2004) The cell surface receptor SLAM controls T cell and macrophage functions. J Exp Med 199:1255–1264

    PubMed  CAS  Google Scholar 

  • Ward BJ, Griffin DE (1993) Changes in cytokine production after measles virus vaccination: predominant production of IL-4 suggests induction of a Th2 response. Clin Immunol Immunopathol 67:171–177

    PubMed  CAS  Google Scholar 

  • Weidmann A, Fischer C, Ohgimoto S, Ruth C, ter Meulen V et al (2000a) Measles virus-induced immunosuppression in vitro is independent of complex glycosylation of viral glycoproteins and of hemifusion. J Virol 74:7548–7553

    CAS  Google Scholar 

  • Weidmann A, Maisner A, Garten W, Seufert M, ter Meulen V et al (2000b) Proteolytic cleavage of the fusion protein but not membrane fusion is required for measles virus-induced immuno-suppression in vitro. J Virol 74:1985–1993

    CAS  Google Scholar 

  • Welstead GG, Iorio C, Draker R, Bayani J, Squire J et al (2005) Measles virus replication in lymphatic cells and organs of CD150 (SLAM) transgenic mice. Proc Natl Acad Sci U S A 102:16415–16420

    PubMed  CAS  Google Scholar 

  • Wilson NS, Villadangos JA (2005) Regulation of antigen presentation and cross-presentation in the dendritic cell network: facts, hypothesis, and immunological implications. Adv Immunol 86:241–305

    PubMed  CAS  Google Scholar 

  • Yanagi Y, Cubitt BA, Oldstone MB (1992) Measles virus inhibits mitogen-induced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology 187:280–289

    PubMed  CAS  Google Scholar 

  • Yanagi Y, Ono N, Tatsuo H, Hashimoto K, Minagawa H (2002) Measles virus receptor SLAM (CD150). Virology 299:155–161

    PubMed  CAS  Google Scholar 

  • Yu Y, Alwine JC (2002) Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3′-OH kinase pathway and the cellular kinase Akt. J Virol 76:3731–3738

    PubMed  CAS  Google Scholar 

  • Yuan H, Veldman T, Rundell K, Schlegel R (2002) Simian virus 40 small tumor antigen activates AKT and telomerase and induces anchorage-independent growth of human epithelial cells. J Virol 76:10685–10691

    PubMed  CAS  Google Scholar 

  • Zaffran Y, Destaing O, Roux A, Ory S, Nheu T et al (2001) CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J Immunol 167:6780–6785

    PubMed  CAS  Google Scholar 

  • Zhang X, Glendening C, Linke H, Parks CL, Brooks C et al (2002) Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76:8737–8746

    PubMed  CAS  Google Scholar 

  • Zilliox MJ, Parmigiani G, Griffin DE (2006) Gene expression patterns in dendritic cells infected with measles virus compared with other pathogens. Proc Natl Acad Sci U S A 103:3363–3368

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schneider-Schaulies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneider-Schaulies, S., Schneider-Schaulies, J. (2009). Measles Virus-Induced Immunosuppression. In: Griffin, D.E., Oldstone, M.B.A. (eds) Measles. Current Topics in Microbiology and Immunology, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70617-5_12

Download citation

Publish with us

Policies and ethics