Skip to main content

Convolutive Blind Source Separation for Noisy Mixtures

  • Chapter
Speech and Audio Processing in Adverse Environments

Convolutive blind source separation (BSS) is a promising technique for separating acoustic mixtures acquired by multiple microphones in reverberant environments. In contrast to conventional beamforming methods no a-priori knowledge about the source positions or sensor arrangement is necessary resulting in a greater versatility of the algorithms. In this contribution we will first review a general BSS framework called TRINICON which allows a unified treatment of broadband and narrowband BSS algorithms. Efficient algorithms will be presented and their high performance will be confirmed by experimental results in reverberant rooms. Subsequently, the BSS model will be extended by incorporating background noise. Commonly encountered realistic noise types are examined and, based on the resulting model, pre-processing methods for noise-robust BSS adaptation are investigated. Additionally, an efficient post-processing technique following the BSS stage, will be presented, which aims at simultaneous suppression of background noise and residual cross-talk. Combining these pre- or post-processing approaches with the algorithms obtained by the TRINICON framework yield versatile BSS systems which can be applied in adverse environments as will be demonstrated by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz, I.A. Stegun (eds.): Handbook of Mathematical Functions, New York, NY, USA: Dover Publications, 1972.

    MATH  Google Scholar 

  2. R. Aichner, S. Araki, S. Makino, T. Nishikawa, H. Saruwatari: Time-domain blind source separation of non-stationary convolved signals by utilizing geometric beamforming, Proc. NNSP ’02, 445–454, Martigny, Switzerland, September 2002.

    Google Scholar 

  3. R. Aichner, H. Buchner, W. Kellermann: Convolutive blind source separation for noisy mixtures, Proc. CFA/DAGA ’04, 583–584, Strasbourg, France, March 2004.

    Google Scholar 

  4. R. Aichner, H. Buchner, W. Kellermann: On the causality problem in time-domain blind source separation and deconvolution algorithms, Proc. ICASSP ’05, 5, 181–184, Philadelphia, PA, USA, March 2005.

    Google Scholar 

  5. R. Aichner, M. Zourub, H. Buchner, W. Kellermann: Post-processing for convolutive blind source separation, Proc. ICASSP ’06, 5, 37–40, Toulouse, France, May 2006.

    Google Scholar 

  6. R. Aichner, H. Buchner, F. Yan, W. Kellermann: A real-time blind source separation scheme and its application to reverberant and noisy acoustic environments, Signal Processing, 86(6), 1260–1277, June 2006.

    Article  MATH  Google Scholar 

  7. R. Aichner, H. Buchner, W. Kellermann: Exploiting narrowband efficiency for broadband convolutive blind source separation, EURASIP Journal on Applied Signal Processing, 1–9, September 2006.

    Google Scholar 

  8. R. Aichner: Acoustic Blind Source Separation in Reverberant and Noisy Environments, PhD thesis, Universität Erlangen-Nürnberg, Erlangen, Germany, 2007.

    Google Scholar 

  9. S.-I. Amari: Natural gradient works efficiently in learning, Neural Computation, 10, 251–276, 1998.

    Article  Google Scholar 

  10. S. Araki, R. Mukai, S. Makino, T. Nishikawa, H. Saruwatari: The fundamental limitation of frequency-domain blind source separation for convolutive mixtures of speech, IEEE Trans. Speech Audio Processing, 11(2), 109–116, March 2003.

    Article  Google Scholar 

  11. B. Ayad, G. Faucon: Acoustic echo and noise cancelling for hands-free communication systems, Proc. IWAENC ’95, 91–94, Røros, Norway, June 1995.

    Google Scholar 

  12. M. Berouti, R. Schwartz, J. Makhoul: Enhancement of speech corrupted by acoustic noise, Proc. ICASSP ’79, 208–211, April 1979.

    Google Scholar 

  13. H. Brehm, W. Stammler: Description and generation of spherically invariant speech-model signals, Signal Processing, 12, 119–141, 1987.

    Article  Google Scholar 

  14. H. Buchner, R. Aichner, W. Kellermann: Blind source separation algorithms for convolutive mixtures exploiting nongaussianity, nonwhiteness, and nonstationarity, Proc. IWAENC ’03, 275–278, Kyoto, Japan, September 2003.

    Google Scholar 

  15. H. Buchner, R. Aichner, W. Kellermann: TRINICON: A versatile framework for multichannel blind signal processing, Proc. ICASSP’ 04, 3, 889–892, Montreal, Canada, May 2004.

    Google Scholar 

  16. H. Buchner, R. Aichner, W. Kellermann: Blind source separation for convolutive mixtures: A unified treatment, in J. Benesty, Y. Huang (eds.), Audio Signal Processing for Next-Generation Multimedia Communication Systems, 255–293, Boston, MA, USA: Kluwer, 2004.

    Chapter  Google Scholar 

  17. H. Buchner, R. Aichner, W. Kellermann: A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics, IEEE Trans. Speech Audio Processing, 13(1), 120–134, January 2005.

    Article  Google Scholar 

  18. H. Buchner, R. Aichner, J. Stenglein, H. Teutsch, W. Kellermann: Simultaneous localization of multiple sound sources using blind adaptive MIMO filtering, Proc. ICASSP ’05, 3, 97–100, Philadelphia, PA, USA, March 2005.

    Google Scholar 

  19. H. Buchner, J. Benesty, W. Kellermann: Generalized multichannel frequency-domain adaptive filtering: Efficient realization and application to hands-free speech communication, Signal Processing, 85, 549–570, 2005.

    Article  MATH  Google Scholar 

  20. H. Buchner, R. Aichner, W. Kellermann: TRINICON-based blind system identification with application to multiple-source localization and separation, in S. Makino, T.-W. Lee, S. Sawada (eds.), Blind Speech Separation, Berlin, Germany: Springer, 2007.

    Google Scholar 

  21. J.-F. Cardoso, B.H. Laheld: Equivariant adaptive source separation, IEEE Trans. Signal Processing, 44(12), 3017–3030, December 1996.

    Article  Google Scholar 

  22. C. Choi, G.-J. Jang, Y. Lee, S. R. Kim: Adaptive cross-channel interference cancellation on blind source separation outputs, Proc. ICA ’04, 857–864, Granada, Spain, September 2004.

    Google Scholar 

  23. A. Cichocki, R. Unbehauen: Neural Networks for Optimization and Signal Processing, Chichester, USA: Wiley, 1994.

    Google Scholar 

  24. A. Cichocki, S. Douglas, S.-I. Amari: Robust techniques for independent component analysis (ICA) with noisy data, Neurocomputing, 22, 113–129, 1998.

    Article  MATH  Google Scholar 

  25. A. Cichocki, S.-I. Amari: Adaptive Blind Signal and Image Processing, Chichester, USA: Wiley, 2002.

    Book  Google Scholar 

  26. R. K. Cook, R. V. Waterhouse, R. D. Berendt, S. Edelman, M.C. Thompson, Jr.: Measurement of correlation coefficients in reverberant sound fields, JASA, 27(6), 1072–1077, November 1955.

    Google Scholar 

  27. T. M. Cover, J. A. Thomas: Elements of Information Theory, New York, NY, USA: Wiley, 1991.

    Book  MATH  Google Scholar 

  28. W. B. Davenport: An experimental study of speech wave propability distribution, JASA, 24(4), 390–399, 1952.

    Google Scholar 

  29. P. Divenyi (ed.): Speech Separation by Humans and Machines, Norwell, MA, USA: Kluwer, 2005.

    Google Scholar 

  30. S. C. Douglas, A. Cichocki, S.-I. Amari: A bias removal technique for blind source separation with noisy measurements, Electronic Letters, 34(14), 1379–1380, July 1998.

    Article  Google Scholar 

  31. T. Eltoft, T. Kim, T.-W. Lee: On the multivariate Laplace distribution, IEEE Signal Processing Lett., 13(5), 300–303, May 2006.

    Article  Google Scholar 

  32. G. Enzner, R. Martin, P. Vary: Partitioned residual echo power estimation for frequency-domain acoustic echo cancellation and postfiltering, Eur. Trans. Telecommun., 13(2), 103–114, 2002.

    Article  Google Scholar 

  33. C. L. Fancourt, L. Parra: The coherence function in blind source separation of convolutive mixtures of non-stationary signals, Proc. NNSP ’01, 303–312, 2001.

    Google Scholar 

  34. S. Gazor, W. Zhang: Speech propability distribution, IEEE Signal Processing Lett., 10(7), 204–207, July 2003.

    Article  Google Scholar 

  35. J. Goldman: Detection in the presence of spherically symmetric random vectors, IEEE Trans. Inform. Theory, 22(1), 52–59, January 1976.

    Article  MATH  Google Scholar 

  36. J. E. Greenberg, P. M. Zurek: Evaluation of an adaptive beamforming method for hearing aids, JASA, 91(3), 1662–1676, March 1992.

    Google Scholar 

  37. J. E. Greenberg: Modified LMS algorithms for speech processing with an adaptive noise canceller, IEEE Trans. Speech Audio Processing, 6(4), 338–351, 1998.

    Article  Google Scholar 

  38. D. W. Griffin, J. S. Lim: Signal estimation from modified short-time fourier transform, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-32(2), 236–243, April 1984.

    Article  Google Scholar 

  39. E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control: A Practical Approach, Hoboken, NJ, USA: Wiley, 2004.

    Book  Google Scholar 

  40. D. A. Harville: Matrix Algebra from a Statistician’s Perspective, Berlin, Germany: Springer, 1997.

    MATH  Google Scholar 

  41. S. Haykin: Adaptive Filter Theory, 4th ed., Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.

    Google Scholar 

  42. W. Herbordt: Sound Capture for Human/Machine Interfaces – Practical Aspects of Microphone Array Signal Processing, volume 315 of Lecture Notes in Control and Information Sciences, Berlin, Germany: Springer, 2005.

    MATH  Google Scholar 

  43. A. Hiroe: Solution of permutation problem in frequency domain ICA, using multivariate probability density functions. Proc. ICA ’06, 601–608, Charleston, SC, USA, March 2006.

    Google Scholar 

  44. O. Hoshuyama, A. Sugiyama: An adaptive microphone array with good sound quality using auxiliary fixed beamformers and its DSP implementation, Proc. ICASSP ’99, 949–952, Phoenix, AZ, USA, March 1999.

    Google Scholar 

  45. R. Hu, Y. Zhao: Adaptive decorrelation filtering algorithm for speech source separation in uncorrelated noises, Proc. ICASSP ’05, 1, 1113–1115, Philadelphia, PA, USA, May 2005.

    MathSciNet  Google Scholar 

  46. R. Hu, Y. Zhao: Fast noise compensation for speech separation in diffuse noise, Proc. ICASSP ’06, 5, 865–868, Toulouse, France, May 2006.

    Google Scholar 

  47. T. P. Hua, A. Sugiyama, R. Le Bouquin Jeannes, G. Faucon: Estimation of the signal-to-interference ratio based on normalized cross-correlation with symmetric leaky blocking matrices in adaptive microphone arrays, Proc. IWAENC ’06, 1–4, Paris, France, September 2006.

    Google Scholar 

  48. A. Hyvaerinen, J. Karhunen, E. Oja: Independent Component Analysis, New York, NY, USA: Wiley, 2001.

    Book  Google Scholar 

  49. S. Ikeda, N. Murata: A method of ICA in time-frequency-domain, Proc. ICA ’99, 365–371, January 1999.

    Google Scholar 

  50. M. Kawamoto, K. Matsuoka, N. Ohnishi: A method of blind separation for convolved non-stationary signals, Neurocomputing, 22, 157–171, 1998.

    Article  MATH  Google Scholar 

  51. W. Kellermann, H. Buchner, R. Aichner: Separating convolutive mixtures with TRINICON, Proc. ICASSP ’06, 5, 961–964, Toulouse, France, May 2006.

    Google Scholar 

  52. T. Kim, T. Eltoft, T.-W. Lee: Independent vector analysis: An extension of ICA to multivariate components, Proc.ICA ’06, 175–172, Charleston, SC, USA, March 2006.

    Google Scholar 

  53. S. Kotz, T. Kozubowski, K. Podgorski: The Laplace Distribution and Generalizations, Basel, Switzerland: Birkhäuser Verlag, 2001.

    MATH  Google Scholar 

  54. B. S. Krongold, D.L. Jones: Blind source separation of nonstationary convolutively mixed signals, Proc. SSAP ’00, 53–57, Pocono Manor, PA, USA, August 2000.

    Google Scholar 

  55. S. Kurita, H. Saruwatari, S. Kajita, K. Takeda, F. Itakura: Evaluation of blind signal separation method using directivity pattern under reverberant conditions, Proc. ICASSP ’00, 5, 3140–3143, Istanbul, Turkey, June 2000.

    Google Scholar 

  56. H. Kuttruff: Room Acoustics, 4th ed., London, GB: Spon Press, 2000.

    Google Scholar 

  57. S. Y. Low, S. Nordholm, R. Tognieri: Convolutive blind signal separation with post-processing, IEEE Trans. Speech Audio Processing, 12(5), 539–548, September 2004.

    Article  Google Scholar 

  58. J. D. Markel, A. H. Gray: Linear Prediction of Speech, Berlin, Germany: Springer, 1976.

    MATH  Google Scholar 

  59. R. Martin, J. Altenhöner: Coupled adaptive filters for acoustic echo control and noise reduction, Proc. ICASSP ’95, 3043–3046, Detroit, MI, USA, May 1995.

    Google Scholar 

  60. R. Martin: Freisprecheinrichtungen mit mehrkanaliger Echokompensation und Störgeräuschreduktion, PhD thesis, RWTH Aachen, Aachen, Germany, June 1995 (in German).

    Google Scholar 

  61. R. Martin: The echo shaping approach to acoustic echo control, Speech Communication, 20, 181–190, 1996.

    Article  Google Scholar 

  62. R. Martin: Small microphone arrays with postfilters for noise and acoustic echo reduction, in M. Brandstein, D. Ward (eds.), Microphone Arrays: Signal Processing Techniques and Applications, 255–279, Berlin, Germany: Springer, 2001.

    Google Scholar 

  63. R. Martin: Noise power spectral density estimation based on optimal smoothing and minimum statistics, IEEE Trans. Speech Audio Processing, 9(5), 504–512, July 2001.

    Article  Google Scholar 

  64. K. Matsuoka, M. Ohya, M. Kawamoto: Neural net for blind separation of nonstationary signals, IEEE Trans. Neural Networks, 8(3), 411–419, 1995.

    Google Scholar 

  65. K. Matsuoka, S. Nakashima: Minimal distortion principle for blind source separation, Proc. ICA ’01, 722–727, San Diego, CA, USA, December 2001.

    Google Scholar 

  66. M. Miyoshi, Y. Kaneda: Inverse filtering of room acoustics, IEEE Trans. Acoust., Speech, Signal Processing, 36(2), 145–152, February 1988.

    Article  Google Scholar 

  67. L. Molgedey, H. G. Schuster: Separation of a mixture of independent signals using time delayed correlations, Physical Review Letters, 72, 3634–3636, 1994.

    Article  Google Scholar 

  68. R. Mukai, S. Araki, H. Sawada, S. Makino: Removal of residual cross-talk components in blind source separation using time-delayed spectral subtraction, Proc. ICASSP ’02, 2, 1789–1792, Orlando, FL, USA, May 2002.

    Google Scholar 

  69. R. Mukai, S. Araki, H. Sawada, S. Makino: Removal of residual cross-talk components in blind source separation using LMS filters, Proc. NNSP ’02, 435–444, Martigny, Switzerland, September 2002.

    Google Scholar 

  70. T. Nishikawa, H. Saruwatari, K. Shikano: Comparison of time-domain ICA, frequency-domain ICA and multistage ICA for blind source separation, Proc. EUSIPCO 03, 2, 15–18, September 2002.

    Google Scholar 

  71. A. Papoulis: Probability, Random Variables, and Stochastic Processes, 4th ed., Boston, MA, USA: McGraw-Hill, 2002.

    Google Scholar 

  72. K. S. Park, J. S. Park, K. S. Son, H. T. Kim: Postprocessing with Wiener filtering technique for reducing residual crosstalk in blind source separation, IEEE Signal Processing Lett., 13(12), 749–751, December 2006.

    Article  Google Scholar 

  73. L. Parra, C. Spence: Convolutive blind source separation of non-stationary sources, IEEE Trans. Speech Audio Processing, 8(3), 320–327, May 2000.

    Article  Google Scholar 

  74. L. Parra, C. Spence, P. Sajda: Higher-order statistical properties arising from the non-stationarity of natural signals, Advances in Neural Information Processing Systems, 13, 786–792, Cambridge, MA, USA: MIT Press, 2000.

    Google Scholar 

  75. H. Sawada, R. Mukai, S. de la Kethulle de Ryhove, S. Araki, S. Makino: Spectral smoothing for frequency-domain blind source separation, Proc. IWAENC ’03, 311–314, Kyoto, Japan, September 2003.

    Google Scholar 

  76. K. U. Simmer, J. Bitzer, C. Marro: Post-filtering techniques, in M. Brandstein, D. Ward (eds.), Microphone Arrays: Signal Processing Techniques and Applications, 39–60, Berlin, Germany: Springer, 2001.

    Google Scholar 

  77. P. Smaragdis: Blind separation of convolved mixtures in the frequency domain, Neurocomputing, 22, 21–34, 1998.

    Article  MATH  Google Scholar 

  78. L. Tong, R.-W. Liu, V.C. Soon, Y.-F. Huang: Indeterminacy and identifiability of blind identification, IEEE Trans. on Circuits and Systems, 38(5), 499–509, May 1991.

    Article  MATH  Google Scholar 

  79. V. Turbin, A. Gilloire, P. Scalart, C. Beaugeant: Using psychoacoustic criteria in acoustic echo cancellation algorithms, Proc. IWAENC ’97, 53–56, London, UK, September 1997.

    Google Scholar 

  80. J.-M. Valin, J. Rouat, F. Michaud: Microphone array post-filter for separation of simultaneous non-stationary sources, Proc. ICASSP ’04, 1, 221–224, Montreal, Canada, May 2004.

    Google Scholar 

  81. S. Van Gerven, D. Van Compernolle: Signal separation by symmetric adaptive decorrelation: Stability, convergence and uniqueness, IEEE Trans. Signal Processing, 43(7), 1602–1612, July 1995.

    Article  Google Scholar 

  82. E. Visser, T.-W. Lee: Speech enhancement using blind source separation and two-channel energy based speaker detection, Proc. ICASSP ’03, 1, 836–839, HongKong, April 2003.

    Google Scholar 

  83. D. Wang and J. Lim: The unimportance of phase in speech enhancement, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-30(4), 679–681, August 1982.

    Article  Google Scholar 

  84. D. Wang, G. J. Brown (eds.): Computational Auditory Scene Analysis: Principles, Algorithms, and Applications, New York, NY, USA: Wiley, 2006.

    Google Scholar 

  85. E. Weinstein, M. Feder, A. Oppenheim: Multi-channel signal separation by decorrelation, IEEE Trans. Speech Audio Processing, 1(4), 405–413, October 1993.

    Article  Google Scholar 

  86. B. Widrow, J. Glover, J. MacCool, J. Kautnitz, C. Williams, R. Hearn, J. Zeidler, E. Dong, R. Goodlin: Adaptive noise cancelling: principles and applications, Proc. IEEE, 63, 1692–1716, 1975.

    Article  Google Scholar 

  87. S. Winter, W. Kellermann, H. Sawada, S. Makino: MAP-based underdetermined blind source separation of convolutive mixtures by hierarchical clustering and ℓ 1-norm minimization, EURASIP Journal on Applied Signal Processing, 1–12, 2007.

    Google Scholar 

  88. H.-C. Wu, J. C. Principe: Simultaneous diagonalization in the frequency domain (SDIF) for source separation, Proc. ICA ’99, 245–250, Aussois, France, December 1999.

    Google Scholar 

  89. K. Yao: A representation theorem and its applications to spherically-invariant random processes, IEEE Trans. Inform. Theory, 19(5), 600–608, September 1973.

    Article  MATH  Google Scholar 

  90. O. Yilmaz, S. Rickard: Blind separation of speech mixtures via time-frequency masking, IEEE Trans. Signal Processing, 52(7), 1830–1847, July 2004.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aichner, R., Buchner, H., Kellermann, W. (2008). Convolutive Blind Source Separation for Noisy Mixtures. In: Hänsler, E., Schmidt, G. (eds) Speech and Audio Processing in Adverse Environments. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70602-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70602-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70601-4

  • Online ISBN: 978-3-540-70602-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics