Skip to main content

Microphone Calibration for Multi-Channel Signal Processing

  • Chapter
Speech and Audio Processing in Adverse Environments

The application of microphone arrays and adaptive beamforming techniques promises significant improvements compared to systems operating with a single microphone as the spatial properties of the sound field are exploited. However, for real-world applications beamformers imply the risk of severe signal degradation due to mismatched microphones. Microphone mismatch naturally arises from production tolerances as well as from aging effects in the long run. The influence of microphone mismatch on beamforming techniques is barely addressed in literature. Mostly microphone mismatch is simply considered equivalent to deviations in the steering direction of a beamformer. In fact both of these imperfections may cause the well-known signal cancellation effect which usually comes along with a growth of the magnitudes of the filter coefficients. However, there are major differences as it will be pointed out in this chapter.

This chapter gives an overview on calibration techniques with fixed as well as with adaptive filters. After a short introduction to beamforming techniques we will point out the problem of mismatched microphones by theoretical investigations under the assumption of a diffuse noise field. In the systematic investigations of adaptive beamformers an unknown characteristic was discovered which could be denoted as "pattern cancellation effect". In a third section different calibration techniques are introduced. These techniques are evaluated under more practical conditions by conducting Monte Carlo simulations on the basis of measured microphone characteristics. Here, the limits of the different calibration techniques are pointed out. In the following section, we will focus on systems which calibrate the microphones automatically. A class of efficient techniques for self-calibration is presented and compared to existing methods. Such self-calibration methods perform a calibration adaptively in the background during normal operation of the system and therefore save the need for an additional costly calibration procedure. The performance of the calibration techniques is examined using practical real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Affes, Y. Grenier: A signal subspace tracking algorithm for microphone array processing of speech, IEEE Trans. Speech and Audio Process., 5(5), 425–437, 1997.

    Article  Google Scholar 

  2. K. M. Buckley, L. J. Griffiths: An adaptive generalized sidelobe canceller with derivative constraints, IEEE Trans. Antennas and Propagation, AP-34(3), 311–319, 1986.

    Article  Google Scholar 

  3. M. Buck: Aspects of first-order differential microphone arrays in the presence of sensor imperfections, Europ. Trans. on Telecommunication, 13(2), 115–122, 2002.

    Article  Google Scholar 

  4. M. Buck: Mehrkanalige Systeme zur Geräuschunterdrückung für Sprachanwendungen unter Berücksichtigung von Mikrofoneigenschaften, Aachen, Germany: Shaker Verlag, 2004 (in German).

    Google Scholar 

  5. M. Buck, H.-J. Köpf, T. Haulick: Lombard-Sprache für Kfz-Anwendungen: eine Analyse verschiedener Aufnahmekonzepte. Proc. DAGA ’06, 217–218, Braunschweig, Germany, 2006 (in German).

    Google Scholar 

  6. M. Buck, T. Haulick, H.-J. Pfleiderer: Self-calibrating microphone arrays for speech signal acquisition: A systematic approach, Signal Processing, 86(6), 1230–1238, 2006.

    Article  MATH  Google Scholar 

  7. J. Bitzer, K. U. Simmer, K.-D. Kammeyer: An alternative implementation of the superdirective beamformer, Proc. WASPAA ’99, 7–10, New Paltz, NY, USA, 1999.

    Google Scholar 

  8. J. Bitzer, K. U. Simmer: Superdirective microphone arrays, in M. Brandstein, D. Ward (eds.), Microphone Arrays – Signal Processing Techniques and Applications, 19–38, Berlin, Germany: Springer, 2001.

    Google Scholar 

  9. P. L. Chu: Superdirective microphone array for a set-top videoconferencing system, Proc. ICASSP ’97, 235–238, Munich, Germany, 1997.

    Google Scholar 

  10. H. Cox: Resolving power and sensitivity to mismatch of optimum array processors, JASA, 54, 771–785, 1973.

    Google Scholar 

  11. H. Cox, R. Zeskind, M. Oven: Robust adaptive beamforming, IEEE Trans. Acoust. Speech Signal Process., ASSP-35(10), 1365–1376, 1987.

    Article  Google Scholar 

  12. M. Dörbecker: Mehrkanalige Signalverarbeitung zur Verbesserung akustisch gestörter Sprachsignale am Beispiel elektonischer Hörhilfen, Aachen, Germany: Verlag der Augustinus Buchhandlung, 10, 1998 (in German).

    Google Scholar 

  13. G. W. Elko: Superdirectional microphone arrays, in S. L. Gay, J. Benesty (eds.), Acoustic Signal Processing for Telecommunication, Boston, MA, USA: Kluwer, 2000, 181–237.

    Google Scholar 

  14. M. H. Er, A. Cantoni: Derivative constraints for broad-band element space antenna array processors, IEEE Trans. Acoust. Speech Signal Process., ASSP-31(6), 1378–1393, 1983.

    Google Scholar 

  15. O. L. Frost, III: An algorithm for linearily constrained adaptive array processing, Proc. IEEE, 60(8), 926–935, 1972.

    Article  Google Scholar 

  16. S. Gannot, D. Burshstein, E. Weinstein: Beamforming methods for multi-channel speech enhancement, Proc. IWAENC ’99, 96–99, Pocono Manor, PA, USA, 1999.

    Google Scholar 

  17. S. Gannot, D. Burshstein, E. Weinstein: Signal enhancement using beamforming and nonstationarity with applications to speech, IEEE Trans. on Signal Process., SP-49(8), 1614–1626, 2001.

    Article  Google Scholar 

  18. E. N. Gilbert, S. P. Morgan: Optimum design of directive antenna arrays subject to random variation, The Bell System Technical Journal, 34(5), 637–663, 1955.

    Google Scholar 

  19. L. J. Griffiths, C. W. Jim: An alternative approach to linearly constrained adaptive beamforming, IEEE Tans. Antennas and Propagation, AP-30(1), 24–34, 1982.

    Google Scholar 

  20. E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control: A Practical approach, Hoboken, NJ, USA: Wiley, 2004.

    Book  Google Scholar 

  21. S. Haykin: Adaptive Filter Theory, 4th ed., Englewood Cliffs, NJ, USA: Prentice Hall, 2002.

    Google Scholar 

  22. W. Herbordt, W. Kellermann: Adaptive beamforming for audio signal acquisition, in J. Benesty, Y. Huang (eds.), Adaptive signal processing: applications to real-world problems, Berlin, Germany: Springer, 2003, 155–194.

    Google Scholar 

  23. O. Hoshuyama, A. Sugiyama, A. Hirano: A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters, IEEE Trans. Signal Process., 47(10), 2677–2684, 1999.

    Article  Google Scholar 

  24. O. Hoshuyama, A. Sugiyama: Robust adaptive beamforming, in M. Brandstein, D. Ward (eds.), Microphone Arrays – Signal Processing Techniques and Applications, Berlin, Germany: Springer, 2001, 87–109.

    Google Scholar 

  25. T. P. Hua, A. Sugiyama, G. Faucon: A new self-calibration technique for adaptive microphone arrays, Proc. IWAENC ’05, 237–240, Eindhoven, Netherlands, 2005.

    Google Scholar 

  26. J.-C. Juncqua: The influence of acoustics on speech production: a noise-induced stress phenomenon known as the Lombard reflex. Speech Communication, 20, 13–22, 1996.

    Article  Google Scholar 

  27. T. I. Laakso, V. Välimäki, M. Karjalainen, U. K. Laine: Splitting the unit delay – tools for fractional delay filter design, IEEE Signal Process. Mag., 13(1), 30–60, 1996.

    Article  Google Scholar 

  28. Z. Liu, M. L. Seltzer, A. Acero, I. Tashev, Z. Zhang, M. Sinclair: A compact multi-sensor headset for hands-free communication, Proc. WASPAA ’05, 138–141, New Paltz, NY, USA, 2003.

    Google Scholar 

  29. D. G. Manolakis, V. K. Ingle, S. M. Kogon: Statistical and adaptive signal processing: spectral estimation, signal modeling, adaptive filtering and array processing, Boston, MA, USA: McGraw-Hill, 2000.

    Google Scholar 

  30. S. Nordholm, I. Claesson, M. Dahl: Adaptive microphone array employing calibration signals: an analytical evaluation, IEEE Trans. on Speech and Audio Processing, 7(3), 241–252, 1999.

    Article  Google Scholar 

  31. P. Oak, W. Kellermann: A calibration algorithm for robust generalized sidelobe cancelling beamformers, Proc. IWAENC ’05, 97–100, Eindhoven, Netherlands, 2005.

    Google Scholar 

  32. A. K. Steele: Comparison of directional and derivative constraints for beamformers subject to multiple linear constraints, IEE Proceedings part H, 130(2), 41–45, 1983.

    Google Scholar 

  33. D. Van Compernolle: Switching adaptive filters for enhancing noisy and reverberant speech from microphone array processing, Proc. ICASSP ’90, 833–836, Albuquerque, MN, USA, 1990.

    Google Scholar 

  34. B. D. Van Veen, K. M. Buckley: Beamforming: A versatile approach to spatial filtering, IEEE ASSP Mag., 5(2), 4–24, 1988.

    Article  Google Scholar 

  35. E. Wallach: On superresolution effects in maximum likelihood adaptive antenna arrays, IEEE Trans. on Antennas and Propagation, 32(3), 259–263, 1984.

    Article  Google Scholar 

  36. B. Widrow, J. R. Glover, F. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, R. C. Goodlin: Adaptive noise cancellation: principles and applications, Proc. IEEE, 63(12), 1692–1718, 1975.

    Article  Google Scholar 

  37. B. Widrow, K. M. Duvall, R. P. Gooch, W. C. Newman: Signal cancellation phenomena in adaptive antennas: causes and cures, IEEE Trans. on Antennas and Propagation, 30(3), 469–478, 1982.

    Article  Google Scholar 

  38. B. Widrow, S. Stearns: Adaptive Signal Processing, Englewood Cliffs, NJ, USA: Prentice Hall, 1985.

    MATH  Google Scholar 

  39. C. L. Zahm: Effects of errors in the direction of incidence on the performance of an adaptive array, Proc. IEEE, 60(8), 1008–1009, 1972.

    Article  Google Scholar 

  40. X. Zhang, J. H. L. Hansen: CSA-BF: Novel constrained switched adaptive beamforming for speech enhancement and recognition in real car environments, Proc. ICASSP ’03, 2, 125–128, Hong Kong, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buck, M., Haulick, T., Pfleiderer, HJ. (2008). Microphone Calibration for Multi-Channel Signal Processing. In: Hänsler, E., Schmidt, G. (eds) Speech and Audio Processing in Adverse Environments. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70602-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70602-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70601-4

  • Online ISBN: 978-3-540-70602-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics