Circulations, Fuzzy Relations and Semirings

  • Roland Glück
  • Bernhard Möller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5133)


Circulations are similar to flows in capacity-constrained networks, with the difference that they also observe lower bounds and, unlike flows, are not directed from a source to a sink. We give a new description of circulations in networks using a technique introduced by Kawahara; he applied the same methods to network flows. We show the power and flexibility of his approach in a new application, refining it at the same time by introducing the concept of test relations. Furthermore we will give algebraic formulations of a generic algorithm for computing a flow in a network with lower bounds and a sufficient and necessary criterion for the existence of a circulation.


Lower Bound Inverse Semigroup Capacity Constraint Scalar Multiplication Network Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AMO]
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  2. [Glü]
    Glück, R.: Network Flows, Semirings and Fuzzy Relations. Institut für Informatik, Universität Augsburg, Tech. Rep, -01 (2008),
  3. [GlüI]
    Glück, R.: Import Networks, Fuzzy Relations and Semirings. In: Berghammer, R., Möller, B., Struth, G. (eds.) Relations and Kleene Algebra in Computer Science — PhD Programme Proceedings, RelMiCS10/AKA5, Frauenwörth, Germany, April 7 – April 11, 2008. Institut für Informatik, Universität Augsburg, Technical Report 2008-04, pp. 58–62 (2008)Google Scholar
  4. [GTT]
    Goldberg, A., Tardos, E., Tarjan, R.: Network Flow Algorithms. In: Korte, B., Lovasz, L., Prömel, H., Schrijver, A. (eds.) Algorithms and Combinatorics. Paths, Rows, and VLSI-Layout, vol. 9, pp. 101–164. Springer, Heidelberg (1990)Google Scholar
  5. [HS]
    Höfner, P., Struth, G.: Automated Reasoning in Kleene Algebra. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. [Jun]
    Jungnickel, D.: Graphs, Networks and Algorithms, 2nd edn. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  7. [Kaw]
    Kawahara, Y.: On the Cardinality of Relations. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 251–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. [KozKA]
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [KozT]
    Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Languages and Systems 19(3), 427–443 (1997)CrossRefGoogle Scholar
  10. [MB]
    Manes, E., Benson, D.: The Inverse Semigroup of a Sum-Ordered Semiring. Semigroup Forum 31, 129–152 (1985)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roland Glück
    • 1
  • Bernhard Möller
    • 1
  1. 1.Institut für InformatikUniversität AugsburgAugsburgGermany

Personalised recommendations