Advertisement

Symmetric and Synchronous Communication in Peer-to-Peer Networks

  • Andreas Witzel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5133)

Abstract

Motivated by distributed implementations of game-theoretical algorithms, we study symmetric process systems and the problem of attaining common knowledge between processes. We formalize our setting by defining a notion of peer-to-peer networks and appropriate symmetry concepts in the context of Communicating Sequential Processes (CSP) [1]. We then prove that CSP with input and output guards makes common knowledge in symmetric peer-to-peer networks possible, but not the restricted version which disallows output statements in guards and is commonly implemented. Our results extend [2].

An extended version is available at http://arxiv.org/abs/0710.2284 .

Keywords

Common Knowledge Electoral System Communication Statement Original Network Boolean Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21, 666–677 (1978)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bougé, L.: On the existence of symmetric algorithms to find leaders in networks of communicating sequential processes. Acta Informatica 25, 179–201 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Halpern, J.Y.: A computer scientist looks at game theory. Games and Economic Behavior 45, 114–131 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gray, J.: Notes on Data Base Operating Systems. LNCS, vol. 60, pp. 393–481. Springer, Heidelberg (1978)Google Scholar
  5. 5.
    Rubinstein, A.: The electronic mail game: Strategic behavior under almost common knowledge. The American Economic Review 79, 385–391 (1989)Google Scholar
  6. 6.
    Morris, S.: Coordination, communication, and common knowledge: A retrospective on the electronic-mail game. Oxf Rev Econ Policy 18, 433–445 (2002)CrossRefGoogle Scholar
  7. 7.
    Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning about knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  8. 8.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. Journal of the ACM 37, 549–587 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Schneider, F.B.: Synchronization in distributed programs. ACM Trans. Program. Lang. Syst. 4, 125–148 (1982)CrossRefzbMATHGoogle Scholar
  10. 10.
    Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, New York (2003)Google Scholar
  11. 11.
    Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  12. 12.
    Andrews, G.R.: Concurrent Programming: Principles and Practice. Addison-Wesley, Reading (1991)Google Scholar
  13. 13.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  14. 14.
    Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. John Wiley and Sons, Chichester (1999)Google Scholar
  15. 15.
    INMOS Ltd. occam 2 Reference Manual. Prentice-Hall (1988)Google Scholar
  16. 16.
    Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing. Distributed Computing 16, 121–163 (2003)CrossRefGoogle Scholar
  17. 17.
    Buckley, G.N., Silberschatz, A.: An effective implementation for the generalized input-output construct of csp. ACM Trans. Program. Lang. Syst. 5, 223–235 (1983)CrossRefzbMATHGoogle Scholar
  18. 18.
    Welch, P.: An occam-pi Quick Reference (1996–2007), https://www.cs.kent.ac.uk/research/groups/sys/wiki/OccamPiReference
  19. 19.
    Welch, P., Brown, N., Moores, J., Chalmers, K., Sputh, B.: Integrating and extending JCSP. In: McEwan, A.A., Schneider, S., Ifill, W., Welch, P. (eds.) Communicating Process Architectures. IOS Press, Amsterdam (2007)Google Scholar
  20. 20.
    Jones, G.: On guards. In: Muntean, T. (ed.) Parallel Programming of Transputer Based Machines (OUG-7), pp. 15–24. IOS Press, Amsterdam (1988)Google Scholar
  21. 21.
    Palamidessi, C.: Comparing the expressive power of the synchronous and asynchronous pi-calculi. Mathematical Structures in Computer Science 13, 685–719 (2003)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Parikh, R., Krasucki, P.: Communication, consensus, and knowledge. Journal of Economic Theory 52, 178–189 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Weinstein, J., Yildiz, M.: Impact of higher-order uncertainty. Games and Economic Behavior 60, 200–212 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Bernstein, A.: Output guards and nondeterminism in Communicating Sequential Processes. ACM Trans. Program. Lang. Syst. 2, 234–238 (1980)CrossRefGoogle Scholar
  25. 25.
    Kurki-Suonio, R.: Towards programming with knowledge expressions. In: 13th ACM SIGACT-SIGPLAN symposium on Principles of programming languages (POPL), pp. 140–149. ACM Press, St. Petersburg Beach (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andreas Witzel
    • 1
    • 2
  1. 1.University of AmsterdamAmsterdam 
  2. 2.CWIAmsterdamThe Netherlands

Personalised recommendations