Skip to main content

Duality and Equational Theory of Regular Languages

  • Conference paper
Book cover Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5126))

Included in the following conference series:

Abstract

This paper presents a new result in the equational theory of regular languages, which emerged from lively discussions between the authors about Stone and Priestley duality. Let us call lattice of languages a class of regular languages closed under finite intersection and finite union. The main results of this paper (Theorems 5.2 and 6.1) can be summarized in a nutshell as follows:

A set of regular languages is a lattice of languages if and only if it can be defined by a set of profinite equations.

The product on profinite words is the dual of the residuation operations on regular languages.

In their more general form, our equations are of the form uv, where u and v are profinite words. The first result not only subsumes Eilenberg-Reiterman’s theory of varieties and their subsequent extensions, but it shows for instance that any class of regular languages defined by a fragment of logic closed under conjunctions and disjunctions (first order, monadic second order, temporal, etc.) admits an equational description. In particular, the celebrated McNaughton-Schützenberger characterisation of first order definable languages by the aperiodicity condition x ω = x ω + 1, far from being an isolated statement, now appears as an elegant instance of a very general result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.E.: The Frattini sublattice of a distributive lattice. Alg. Univ. 3, 216–228 (1973)

    Article  MATH  Google Scholar 

  2. Almeida, J.: Residually finite congruences and quasi-regular subsets in uniform algebras. Partugaliæ Mathematica 46, 313–328 (1989)

    MATH  MathSciNet  Google Scholar 

  3. Almeida, J.: Finite semigroups and universal algebra. World Scientific Publishing Co. Inc., River Edge (1994)

    MATH  Google Scholar 

  4. Almeida, J.: Profinite semigroups and applications. In: Structural theory of automata, semigroups, and universal algebra. NATO Sci. Ser. II Math. Phys. Chem., vol. 207, pp. 1–45. Springer, Dordrecht (2005); Notes taken by Alfredo Costa

    Chapter  Google Scholar 

  5. Almeida, J., Volkov, M.V.: Profinite identities for finite semigroups whose subgroups belong to a given pseudovariety. J. Algebra Appl. 2(2), 137–163 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Birkhoff, G.: On the structure of abstract algebras. Proc. Cambridge Phil. Soc. 31, 433–454 (1935)

    Article  MATH  Google Scholar 

  7. Eilenberg, S.: Automata, languages, and machines, vol. B. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1976)

    MATH  Google Scholar 

  8. Ésik, Z.: Extended temporal logic on finite words and wreath products of monoids with distinguished generators. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 43–58. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Goldblatt, R.: Varieties of complex algebras. Ann. Pure App. Logic 44, 173–242 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kunc, M.: Equational description of pseudovarieties of homomorphisms. Theoretical Informatics and Applications 37, 243–254 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pin, J.-E.: A variety theorem without complementation. Russian Mathematics (Iz. VUZ) 39, 80–90 (1995)

    MathSciNet  Google Scholar 

  12. Pin, J.-É., Straubing, H.: Some results on \(\mathcal C\)-varieties. Theoret. Informatics Appl. 39, 239–262 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pin, J.-É., Weil, P.: A Reiterman theorem for pseudovarieties of finite first-order structures. Algebra Universalis 35, 577–595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pippenger, N.: Regular languages and Stone duality. Theory Comput. Syst. 30(2), 121–134 (1997)

    MATH  MathSciNet  Google Scholar 

  15. Polák, L.: Syntactic semiring of a language. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 611–620. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2, 186–190 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  17. Reilly, N.R., Zhang, S.: Decomposition of the lattice of pseudovarieties of finite semigroups induced by bands. Algebra Universalis 44(3-4), 217–239 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis 14(1), 1–10 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stone, M.: The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40, 37–111 (1936)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stone, M.H.: Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. 41(3), 375–481 (1937)

    Article  MATH  MathSciNet  Google Scholar 

  21. Straubing, H.: On logical descriptions of regular languages. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Weil, P.: Profinite methods in semigroup theory. Int. J. Alg. Comput. 12, 137–178 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of language theory, ch. 2, vol. 1, pp. 679–746. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luca Aceto Ivan Damgård Leslie Ann Goldberg Magnús M. Halldórsson Anna Ingólfsdóttir Igor Walukiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gehrke, M., Grigorieff, S., Pin, JÉ. (2008). Duality and Equational Theory of Regular Languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70583-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70583-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70582-6

  • Online ISBN: 978-3-540-70583-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics