Skip to main content

Optimal Cryptographic Hardness of Learning Monotone Functions

  • Conference paper
Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5125))

Included in the following conference series:

Abstract

A wide range of positive and negative results have been established for learning different classes of Boolean functions from uniformly distributed random examples. However, polynomial-time algorithms have thus far been obtained almost exclusively for various classes of monotone functions, while the computational hardness results obtained to date have all been for various classes of general (nonmonotone) functions. Motivated by this disparity between known positive results (for monotone functions) and negative results (for nonmonotone functions), we establish strong computational limitations on the efficient learnability of various classes of monotone functions.

We give several such hardness results which are provably almost optimal since they nearly match known positive results. Some of our results show cryptographic hardness of learning polynomial-size monotone circuits to accuracy only slightly greater than \(1/2 + 1/\sqrt{n}\); this accuracy bound is close to optimal by known positive results (Blum et al., FOCS ’98). Other results show that under a plausible cryptographic hardness assumption, a class of constant-depth, sub-polynomial-size circuits computing monotone functions is hard to learn; this result is close to optimal in terms of the circuit size parameter by known positive results as well (Servedio, Information and Computation ’04). Our main tool is a complexity-theoretic approach to hardness amplification via noise sensitivity of monotone functions that was pioneered by O’Donnell (JCSS ’04).

Supported by NSF award CNS-0716245, DARPA grant HR0011-07-1-0012, NSF CAREER award CCF-0347282, NSF CAREER CCF-03-047839, NSF award SBE-0245014, NSF award CCF-0523664, and a Sloan Foundation Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., Saks, M.: Minimizing DNF Formulas and \(AC^0_d\) Circuits Given a Truth Table. In: CCC, pp. 237–251 (2006)

    Google Scholar 

  2. Blum, A., Burch, C., Langford, J.: On learning monotone boolean functions. In: 39th FOCS, pp. 408–415 (1998)

    Google Scholar 

  3. Berkowitz, S.J.: On some relationships between monotone and non-monotone circuit complexity. Technical Report, University of Toronto (1982)

    Google Scholar 

  4. Blum, A., Furst, M., Kearns, M., Lipton, R.: Cryptographic Primitives Based on Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  5. Bshouty, N., Tamon, C.: On the Fourier spectrum of monotone functions. Journal of the ACM 43(4), 747–770 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Healy, A., Vadhan, S., Viola, E.: Using Nondeterminism to Amplify Hardness. SIAM Journal on Computing 35(4), 903–931 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kharitonov, M.: Cryptographic hardness of distribution-specific learning. In: 25th STOC, pp. 372–381 (1993)

    Google Scholar 

  8. Kharitonov, M.: Cryptographic lower bounds for learnability of Boolean functions on the uniform distribution. JCSS 50, 600–610 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions. In: 29th FOCS, pp. 68–80 (1988)

    Google Scholar 

  10. Kearns, M.J., Li, M., Valiant, L.G.: Learning boolean formulas. J. ACM 41(6), 1298–1328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klivans, A., O’Donnell, R., Servedio, R.: Learning intersections and thresholds of halfspaces. JCSS 68(4), 808–840 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform and learnability. Journal of the ACM 40(3), 607–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mansour, Y.: Learning Boolean functions via the Fourier transform, pp. 391–424. Kluwer Academic Publishers, Dordrecht (1994)

    MATH  Google Scholar 

  14. Mossel, E., O’Donnell, R.: On the noise sensitivity of monotone functions. Random Struct. Algorithms 23(3), 333–350 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mossel, E., O’Donnell, R., Servedio, R.: Learning functions of k relevant variables. J. Comput. & Syst. Sci. 69(3), 421–434 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nepomnjaščil̆, V.A.: Rudimentary predicates and Turing calculations. Math Dokl. 11, 1462–1465 (1970)

    Google Scholar 

  17. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. Journal of the ACM 51(2), 231–262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. O’Donnell, R.: Hardness amplification within NP. JCSS 69(1), 68–94 (2004)

    MathSciNet  MATH  Google Scholar 

  19. O’Donnell, R., Servedio, R.: Learning monotone decision trees in polynomial time. SIAM Journal on Computing 37(3), 827–844 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Razborov, A.: Lower bounds on the monotone network complexity of the logical permanent. Mat. Zametki 37, 887–900 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Servedio, R.: On learning monotone DNF under product distributions. Information and Computation 193(1), 57–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Valiant, L.: A theory of the learnable. CACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  23. Verbeurgt, K.: Learning DNF under the uniform distribution in quasi-polynomial time. In: 3rd COLT, pp. 314–326 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dachman-Soled, D., Lee, H.K., Malkin, T., Servedio, R.A., Wan, A., Wee, H. (2008). Optimal Cryptographic Hardness of Learning Monotone Functions. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70575-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70575-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70574-1

  • Online ISBN: 978-3-540-70575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics