Skip to main content

Approximating List-Coloring on a Fixed Surface

  • Conference paper
Book cover Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5125))

Included in the following conference series:

  • 2068 Accesses

Abstract

It is well-known that approximating the chromatic number within a factor of n 1 − ε cannot be done in polynomial time for any ε> 0, unless coRP = NP. Also, it is known that computing the list-chromatic number is much harder than the chromatic number (assuming that the complexity classes NP and coNP are different). In fact, the problem of deciding if a given graph is f-list-colorable for a function f : V →{k − 1,k} for k ≥ 3 is Π 2 p-complete.

In this paper, we are concerned with the following questions:

  1. 1

    Given a graph embedded on a surface of bounded genus, what is its list-chromatic number ?

  2. 1

    Given a graph embedded on a surface of bounded genus with list-chromatic number k, what is the least l (l ≥ k) such that the graph can be efficiently and legally colored given a list (coloring scheme) of order l ?

The seminal result of Thomassen [19] gives rise to answers for these problems when a given graph is planar. In fact, he gave a polynomial time algorithm to 5-list-color a planar graph. Thomassen’s result together with the hardness result (distinguishing between 3, 4 and 5 list-colorability is NP-complete for planar graphs and bounded genus graphs) gives an additive approximation algorithm for list-coloring planar graphs within 2 of the list-chromatic number.

Our main result is to extend this result to bounded genus graphs. In fact, our algorithm gives a list-coloring when each vertex has a list with at least χ l (G) + 2 colors available. The time complexity is O(n).

It also generalizes the other deep result of Thomassen [20] who gave an additive approximation algorithm for graph-coloring bounded genus graphs within 2 of the chromatic number.

This theorem can be compared to the result by Kawarabayashi and Mohar(STOC’06) who gave an O(k)-approximation algorithm for list-coloring graphs with no K k -minors. For minor-closed graphs, there is a 2-approximation algorithm for graph-coloring by Demaine, Hajiaghayi and Kawarabayashi (FOCS’05), but it seems that there is a huge gap between list-coloring and graph-coloring in minor-closed family of graphs. On the other hand, this is not the case for bounded genus graphs, as we pointed out above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Appl. Math. 23, 11–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decomposition of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor theory: Decomposition, approximation, and coloring. In: 46th Annual Sumposium on Foundations of Computer Science (FOCS 2005), pp. 637–646 (2005)

    Google Scholar 

  4. DeVos, M., Kawarabayashi, K., Mohar, B.: Locally planar graphs are 5-choosable. J. Combin. Theory Ser. B (to appear)

    Google Scholar 

  5. Diestel, R.: Graph Theory, 2nd edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  6. Diestel, R., Gorbunov, K.Y., Jensen, T.R., Thomassen, C.: Highly connected sets and the excluded grid theorem. J. Combin. Theory Ser. B 75, 61–73 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erdős, P., Rubin, Taylor: Choosability in graphs. In: Proc. West-Coast conference on Combinatorics, Graph Theory and Computing. Arcata Califonia, Congressus Numerantium vol. XXVI, pp. 125–157 (1979)

    Google Scholar 

  8. Feige, U., Kilian, J.: Zero-knowledge and the chromatic number. J. Comput. System Sci. 57, 187–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fellows, M., Fomin, F., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616, pp. 366–377. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Gutner, S.: The complexity of planar graph choosability. Discrete Math. 159, 119–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kawarabayashi, K., Mohar, B.: Approximating the chromatic number and the list-chromatic number of minor-closed family of graphs and odd-minor-closed family of graphs. In: Proceedings of the 38th ACM Symposium on Theory of Computing (STOC 2006), pp. 401–416 (2006)

    Google Scholar 

  12. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Univ. Press, Baltimore (2001)

    MATH  Google Scholar 

  13. Reed, B.: Tree width and tangles: a new connectivity measure and some applications. In: Surveys in Combinatorics, 1997, London. London Math. Soc. Lecture Note Ser, vol. 241, pp. 87–162. Cambridge Univ. Press, Cambridge (1997)

    Chapter  Google Scholar 

  14. Reed, B.: Rooted Routing in the Plane. Discrete Applied Mathematics 57, 213–227 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reed, B., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in planar graphs in linear time. Graph structure theory (Seattle, WA, 1991). Contemp. Math, vol. 147, pp. 295–301. Amer. Math. Soc., Providenc (1993)

    MATH  Google Scholar 

  16. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Combin. Theory Ser. B 41, 92–114 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Robertson, N., Seymour, P.D.: Graph minors. XI. Circhits on a surface. J. Combin. Theory Ser. B 60, 72–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Combin. Theory Ser. B 62, 323–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Thomassen, C.: Every planar graph is 5-choosable. J. Combin. Theory Ser. B 62, 180–181 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thomassen, C.: Color-critical graphs on a fixed surface. J. Combin. Theory Ser. B 70, 67–100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thomassen, C.: A simpler proof of the excluded minor theorem for higher surfaces. J. Combin. Theory Ser. B 70, 306–311 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thomassen, C.: Exponentially many 5-list-colorings of planar graphs. J. Combin. Theory Ser. B 97, 571–583 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Voigt, M.: List colourings of planar graphs. Discrete Math. 120, 215–219 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tuza, Z.: Graph colorings with local constraints—a survey. Discuss. Math. Graph Theory 17, 161–228 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vizing: Coloring the vertices of a graph in prescribed colors. Metpdy Diskret. Anal. v Teorii Kodov i Schem 29, 3–10 (1976) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawarabayashi, Ki. (2008). Approximating List-Coloring on a Fixed Surface. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70575-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70575-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70574-1

  • Online ISBN: 978-3-540-70575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics