Arithmetic Design on Quantum-Dot Cellular Automata Nanotechnology

  • Ismo Hänninen
  • Jarmo Takala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5114)


Quantum-dot cellular automata nanotechnology promises molecular digital circuits with ultra-high clock frequencies, to replace the traditional approaches reaching their physical limits. Although large scale utilization requires still several breakthroughs, there has been serious effort in digital design on this sunrise technology. This review describes the basic concepts of the nanotechnology and the most important existing designs, providing new research directions for the digital community.


Nanotechnology digital design arithmetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lent, C., Tougaw, P., Porod, W.: Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In: Proc. Workshop Physics and Compution, Dallas, TX, November 17–20, pp. 5–13 (1994)Google Scholar
  2. 2.
    Lent, C., Tougaw, P.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRefGoogle Scholar
  3. 3.
    Snider, G., Orlov, A., Amlani, I., Bernstein, G., Lent, C., Merz, J., Porod, W.: Quantum-dot cellular automata. In: Dig. Papers of Microprocesses and Nanotechnology Conf., Yokohama, Japan, July 6–8, pp. 90–91 (1999)Google Scholar
  4. 4.
    Orlov, A., Kummamuru, R., Ramasubramaniam, R., Lent, C., Bernstein, G., Snider, G.: Clocked quantum-dot cellular automata devices: experimental studies. In: Proc. IEEE Conf. Nanotechnology, Maui, HI, October 28–30, pp. 425–430 (2001)Google Scholar
  5. 5.
    Kummamuru, R., Orlov, A., Ramasubramaniam, R., Lent, C., Bernstein, G., Snider, G.: Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans. Electron Devices 50(9), 1906–1913 (2003)CrossRefGoogle Scholar
  6. 6.
    Blair, E., Lent, C.: Quantum-dot cellular automata: an architecture for molecular computing. In: Proc. Int. Conf. Simulation of Semiconductor Processes and Devices, Boston, MA, September 3–5, pp. 14–18 (2003)Google Scholar
  7. 7.
    Wang, W., Walus, K., Jullien, G.: Quantum-dot cellular automata adders. In: Proc. IEEE Conf. Nanotechnology, San Francisco, CA, August 11–14, pp. 461–464 (2003)Google Scholar
  8. 8.
    Zhang, R., Walus, K., Wang, W., Jullien, G.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)CrossRefGoogle Scholar
  9. 9.
    Hänninen, I., Takala, J.: Robust adders based on quantum-dot cellular automata. In: Proc. IEEE Int. Conf. Application-Specific Systems, Architectures and Processors, Montréal, QC, Canada, July 8–11, pp. 391–396 (2007)Google Scholar
  10. 10.
    Huang, J., Momenzadeh, M., Lombardi, F.: Design of sequential circuits by quantum-dot cellular automata. Microelectr. J. 38(4–5), 525–537 (2007)CrossRefGoogle Scholar
  11. 11.
    Niemier, M., Kogge, P.: Exploring and exploiting wire-level pipelining in emerging technologies. In: Proc. Annu. Int. Symp. Computer Architecture, Göteborg, Sweden, June 30–July 4, pp. 166–177 (2001)Google Scholar
  12. 12.
    Walus, K., Jullien, G., Dimitrow, V.: Computer arithmetic structures for quantum cellular automata. In: Conf. Rec. 37th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, November 9–12, pp. 1435–1439 (2003)Google Scholar
  13. 13.
    Fijany, A., Toomarian, N., Modarress, K., Spotnitz, M.: Bit-serial adder based on quantum dots. Technical Report NPO-20869, NASA’s Jet Propulsion Laboratory, Pasadena, CA (2003)Google Scholar
  14. 14.
    Vetteth, A., Walus, K., Dimitrov, V., Jullien, G.: Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. In: Proc. IEEE Conf. Emerging Telecommunications Technologies, Dallas, TX, September 23–24 (2002)Google Scholar
  15. 15.
    Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 26(1), 176–183 (2007)CrossRefGoogle Scholar
  16. 16.
    Zhang, R., Walus, K., Wang, W., Jullien, G.: Performance comparison of quantum-dot cellular automata adders. In: IEEE Int. Symp. Circuits and Systems, Kobe, Japan, May 23–26, pp. 2522–2526 (2005)Google Scholar
  17. 17.
    Cho, H., Swartzlander, E.: Adder designs and analyses for qauntum-dot cellular automata. IEEE Trans. Nanotechnol. 6(3), 374–383 (2007)CrossRefGoogle Scholar
  18. 18.
    Hänninen, I., Takala, J.: Binary multipliers on quantum-dot cellular automata. Facta Universitatis 20(3), 541–560 (2007)Google Scholar
  19. 19.
    Cho, H., Swartzlander, E.: Serial parallel multiplier design in quantum-dot cellular automata. In: Proc. IEEE Symp. Computer Arithmetic, Montepellier, France, June 25–27, pp. 7–15 (2007)Google Scholar
  20. 20.
    Janulis, J., Tougaw, P., Henderson, S., Johnson, E.: Serial bit-stream analysis using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 158–164 (2004)CrossRefGoogle Scholar
  21. 21.
    Huang, J., Momenzadeh, M., Schiano, L., Ottavi, M., Lombardi, F.: Tile-based QCA design using majority-like logic primitives. ACM J. Emerging Technologies in Computing Systems 1(3), 163–185 (2005)CrossRefGoogle Scholar
  22. 22.
    Huang, J., Momenzadeh, M., Lombardi, F.: Analysis of missing and additional cell defects in sequential quantum-dot cellular automata. Integration, the VLSI Journal 40(4), 503–515 (2007)CrossRefGoogle Scholar
  23. 23.
    Choi, M., Patitz, Z., Jin, B., Tao, F., Park, N., Choi, M.: Designing layout-timing independent quantum-dot cellular automata (QCA) circuits by global asynchrony. J. System Architecture 53(9), 551–567 (2007)CrossRefGoogle Scholar
  24. 24.
    Vankamamidi, V., Ottavi, M., Lombardi, F.: Dimensional schemes for clocking/timing of QCA circuits. T. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 27(1), 34–44 (2008)CrossRefGoogle Scholar
  25. 25.
    Timler, J., Lent, C.: Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94, 1050–1060 (2003)CrossRefGoogle Scholar
  26. 26.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)zbMATHCrossRefGoogle Scholar
  28. 28.
    Frost-Murphy, S., Ottavi, M., Frank, M., DeBenedictis, E.: On the design of reversible qdca systems. Tech. Report SAND2006-5990, Sandia Nat. Lab, Albuquerque, NM, and Livermore, CA (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ismo Hänninen
    • 1
  • Jarmo Takala
    • 1
  1. 1.Department of Computer SystemsTampere University of TechnologyTampereFinland

Personalised recommendations