Skip to main content

Intellectual Property Protection for Embedded Sensor Nodes

  • Conference paper
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5114))

Included in the following conference series:

  • 745 Accesses

Abstract

Embedded Sensor Networks are deeply immersed in their environment, and are difficult to protect from abuse or theft. Yet the software contained within these remote sensors often represents years of development, and requires adequate protection. We present a software based solution for the Texas Instruments C5509A DSP processor which uses object-code encryption and public-key key exchange with a server. The scheme is tightly integrated into the tool flow of the DSP processor and compatible with existing embedded processor design flows. We present performance and overhead metrics of the encryption algorithms and the security protocols. We also describe the limitations of the solution that originate from its software-only, backwards-compatible nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. TCG Mobile Trusted Module Specification v 1.0 (June 2007), http://www.trustedcomputinggroup.com

  2. CNSS: National Policy on the Use of the Advanced Encryption Standard (AES) to Protect National Security Systems and National Security Information. ICNSS Policy No. 15 Fact Sheet No. 1, Ft. Mead (2003)

    Google Scholar 

  3. Giry, D.: Recommended Cryptograph Keylength, http://www.keylength.com

  4. Branovic, I., Giorgi, R., Martinelli, E.: A Workload Characterization of Elliptic Curve Cryptography Methods in Embedded Environments. In: ACM SIGARCH workshop on Memory Performance, pp. 27–34. ACM, New York (2003)

    Google Scholar 

  5. LibTomCrypt, http://libtom.org

  6. TinyECC, ECC for Sensor Networks, http://discovery.csc.ncsu.edu/software/TinyECC/

  7. Microprocessor and Microcomputer Standards Committee of the IEEE Computer Society: IEEE Standard Specifications for Public Key Cryptography. IEEE-SA Standards Board, New York (2000)

    Google Scholar 

  8. Hu, Y., Li, Q., Kuo, C.-C.: Efficient Implementation of Elliptic Curve Cryptography (ECC) on VLIW-Micro- Architecture Media Processor. In: 2nd IEEE ICME, pp. 181–184. IEEE Press, New York (2004)

    Google Scholar 

  9. Wollinger, T., Pelzl, J., Wittelsberger, V., Paar, C.: Elliptic and Hyperelliptic Curves on Embedded P. In: 3rd ACM TCES, pp. 509–533. ACM, New York (2004)

    Google Scholar 

  10. Bartolini, S., Branovic, I., Giorgi, R., Martinelli, E.: A Performance Evaluation of ARM ISA extensions for Elliptic Curve Cryptography Over Binary Finite Fields. In: 16th IEEE CAHPC, pp. 238–245. IEEE Press, New York (2004)

    Google Scholar 

  11. Ferguson, N., Schneier, B.: Practical Cryptography. Wiley Publishing, Inc., Indianapolis (2004)

    Google Scholar 

  12. Buskey, R.F., Frosik, B.B.: Protected JTAG. In: IEEE Parallel Processing Workshop, p. 8. IEEE Press, New York (2006)

    Google Scholar 

  13. Dallas Semiconductor: White Paper 8: 1-Wire SHA-1 Overview (September 2002), http://www.maxim-ic.com/

  14. Suh, G., O‘Donnel, C., Sachdev, I., Devadas, S.: Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random Functions. In: 32nd IEEE ISCA, pp. 25–36. IEEE Press, New York (2005)

    Google Scholar 

  15. Bellare, M., Canettiy, R., Krawczykz, H.: Message Authentication using Hash Functions: The HMAC Construction. In: 2nd CryptoBytes, RSA Laboratories, Bedford, vol. 1, pp. 25–36 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mladen Bereković Nikitas Dimopoulos Stephan Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gora, M., Simpson, E., Schaumont, P. (2008). Intellectual Property Protection for Embedded Sensor Nodes. In: Bereković, M., Dimopoulos, N., Wong, S. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2008. Lecture Notes in Computer Science, vol 5114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70550-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70550-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70549-9

  • Online ISBN: 978-3-540-70550-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics