Climate and Biological Sensor Network

  • Perfecto Mariño
  • Fernando Pérez-Fontán
  • Miguel Ángel Domínguez
  • Santiago Otero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5114)


Biological research in agriculture needs a lot of specialised electronic sensors in order to fulfil different goals, like as: climate monitoring, soil and fruit assessment, control of insects and diseases, chemical pollutants, identification and control of weeds, crop tracking, and so on. That research must be supported by consistent biological models able to simulate diverse environmental conditions, in order to predict the right human actions before risky biological damage could be irreversible. In this paper an experimental distributed network based on climatic and biological wireless sensors is described , for providing real measurements in order to validate different biological models used for viticulture applications. First, the experimental network for field automatic data acquisition is introduced , as a system based in a distributed process. Following, the design of the wireless network is explained in detail, with a previous discussion about the state-of-the-art, and some measurements for viticulture research are pointed out. Finally future developments are stated.


sensor systems sensor networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perry, T.S.: Capturing climate change. IEEE Spectrum 39(1), 58–65 (2002)CrossRefGoogle Scholar
  2. 2.
    Gail, W.B.: Climate control. IEEE Spectrum 44(5), 20–25 (2007)CrossRefGoogle Scholar
  3. 3.
    Mariño, P., Fontán, F.P., Machado, F., Otero, S.: Distributed sensors network applied to the rain impairment study on radiocommunication systems. In: Industrial Informatics, 2006 IEEE International Conference, Singapore, pp. 1036–1041 (August 2006)Google Scholar
  4. 4.
    Poza, F., Mariño, P., Otero, S., Machado, F.: Programmable electronic instrument for condition monitoring of in-service power transformers. IEEE Transactions on Instrumentation and Measurement 55(2), 625–634 (2006)CrossRefGoogle Scholar
  5. 5.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)CrossRefGoogle Scholar
  6. 6.
    Niculescu, D.: Communication paradigms for sensor networks. IEEE Communications Magazine 43(3), 116–122 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Demirkol, I., Ersoy, C., Alagoz, F.: MAC protocols for wireless sensor networks: a survey. IEEE Communications Magazine 44(4), 115–121 (2006)CrossRefGoogle Scholar
  8. 8.
    Conti, M., Giordano, S.: Multihop ad hoc networking: The theory. Communications Magazine, IEEE 45, 78–86 (2007)CrossRefGoogle Scholar
  9. 9.
    Conti, M., Giordano, S.: Multihop ad hoc networking: The reality. Communications Magazine, IEEE 45, 88–95 (2007)Google Scholar
  10. 10.
    Prophet, G.: Is zigbee ready for the big time? EDN Europe (August 2004)Google Scholar
  11. 11.
    Wheeler, A.: Commercial applications of wireless sensor networks using zigbee. Communications Magazine, IEEE 45, 70–77 (2007)Google Scholar
  12. 12.
    Oppermann, I., Stoica, L., Rabbachin, A., Shelby, Z., Haapola, J.: UWB wireless sensor networks: UWEN - a practical example. IEEE Communications Magazine 42(12), 27–32 (2004)CrossRefGoogle Scholar
  13. 13.
    Willig, A., Matheus, K., Wolisz, A.: Wireless technology in industrial networks. Proceedings of the IEEE 93(6), 1130–1151 (2005)CrossRefGoogle Scholar
  14. 14.
    Kunz, M.: Wireless lan planning is a science, not an art! The Industrial Ethernet Book, pp. 32–34 (September 2006)Google Scholar
  15. 15.
    Moore, R.J., Jones, D.A., Cox, D.R., Isham, V.S.: Design of the hyrex raingauge network. Hydrology and Earth System Sciences 4, 521–530 (2000)CrossRefGoogle Scholar
  16. 16.
    Ruiz, L.B., Braga, T.R.M., Silva, F.A., Assuncao, H.P., Nogueira, J.M.S., Loureiro, A.A.F.: On the design of a self-managed wireless sensor network. IEEE Communications Magazine 43(8), 95–102 (2005)CrossRefGoogle Scholar
  17. 17.
    Guizzo, E.: Into deep ice [ice monitoring]. IEEE Spectrum 42(12), 28–35 (2005)CrossRefGoogle Scholar
  18. 18.
    Cutler, T.: Case study: wireless, serial and etherner link for enviromental project. The Industrial Ethernet Book, pp. 37–40 (November 2005)Google Scholar
  19. 19.
    Ghosh, A., Wolter, D.R., Andrews, J.G., Chen, R.: Broadband wireless access with wimax/802.16: current performance benchmarks and future potential. IEEE Communications Magazine 43(2), 129–136 (2005)CrossRefGoogle Scholar
  20. 20.
    Livingston, M., Franke, R.: Choosing a 802.16 radio for use in a wimax application. Embedded Systems Europe, 31–34 (July 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Perfecto Mariño
    • 1
  • Fernando Pérez-Fontán
    • 1
  • Miguel Ángel Domínguez
    • 1
  • Santiago Otero
    • 1
  1. 1.University of VigoVigoSpain

Personalised recommendations