A Multi-objective and Hierarchical Exploration Tool for SoC Performance Estimation

  • Alexis Vander Biest
  • Alienor Richard
  • Dragomir Milojevic
  • Frederic Robert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5114)


In this paper we present a flexible performance estimation tool called Nessie developed to provide system-on-chip designers with automated multi-objective design space exploration and its related tool called Yeti building and executing reusable closed-formed models. After reviewing the existing closed-formed expressions based and application/platform mapping performance estimation tools, we propose an hybrid tool to cope with their limitations. We present a brief summary of the functionalities of Yeti and describe Nessie, our hierarchical application/platform performance estimation mapping tool which banalizes all the degrees of freedom for in-depth design space exploration and introduces multi-objective modeling. Through this paper, we explain how the combination of these tools provides the designer with innovative and powerful functionalities for performance prediction at the earlier stages of the design flow.


Performance Estimation Abstraction Level Silicon Area Design Space Exploration Lower Abstraction Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sylvester, D., Hu, C.: Analytical modeling and characterization of deep-submicrometer interconnect. In: IEEE (ed.) Proc. IEEE, vol. 89, pp. 634–664 (2001)Google Scholar
  2. 2.
    Polstra, S.: A systematic approach to exploring embedded system architectures at multiple abstraction levels. IEEE Trans. Comput. 55(2), 99–112 (2006); Member-Andy D. Pimentel and Student Member-Cagkan ErbasCrossRefGoogle Scholar
  3. 3.
    Kangas, T., Kukkala, P., Orsila, H., Salminen, E., Hännikäinen, M., Hämäläinen, T.D., Riihimäki, J., Kuusilinna, K.: Uml-based multiprocessor soc design framework. Trans. on Embedded Computing Sys. 5(2), 281–320 (2006)CrossRefGoogle Scholar
  4. 4.
    Moullec, Y.L., Diguet, J.P., Philippe, J.L.: Design-trotter: a multimedia embedded systems design space exploration tool. In: IEEE Workshop on Multimedia Signal Processing, pp. 448–451 (2002)Google Scholar
  5. 5.
    Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A.: Metropolis: An integrated electronic system design environment. Computer 36(4), 45–52 (2003)CrossRefGoogle Scholar
  6. 6.
    Calvez, J.P., Pasquier, O.: Performance assessment of embedded hw/sw systems. In: ICCD 1995: Proceedings of the 1995 International Conference on Computer Design, pp. 52–57. IEEE Computer Society, Washington (1995)CrossRefGoogle Scholar
  7. 7.
    Chou, P.H., Ortega, R.B., Borriello, G.: The chinook hardware/software co-synthesis system. In: ISSS 1995: Proceedings of the 8th international symposium on System synthesis, pp. 22–27. ACM Press, New York (1995)Google Scholar
  8. 8.
    Mangaser, R., Rose, K.: Facilitating interconnect-based vlsi design. In: MSE 1997: Proceedings of the 1997 International Conference on Microelectronics Systems Education (MSE 1997), p. 139. IEEE Computer Society, Washington (1997)CrossRefGoogle Scholar
  9. 9.
    Takahashi, S., Edahiro, M., Hayashi, Y.: A new lsi performance prediction model for interconnection analysis of future lsis. In: ASP-DAC, pp. 51–56 (1998)Google Scholar
  10. 10.
    Codrescu, L., Pant, M.D., Taha, T.M., Eble, J., Wills, D.S., Meindl, J.D.: Exploring microprocessor architectures for gigascale integration. In: ARVLSI, pp. 242–255 (1999)Google Scholar
  11. 11.
    Eble, J.C., De, V.K., Wills, D.S., Meindl, J.D.: A generic system simulator (genesys) for asic technology and architecture beyond 2001. In: ASIC Conference and Exhibit proceedings, pp. 193–196 (1996)Google Scholar
  12. 12.
    Sylvester, D., Keutzer, K.: System-level performance modeling with bacpac – berkeley advanced chip performance calculator (1999)Google Scholar
  13. 13.
    Caldwell, A.E., Cao, Y., Kahng, A.B., Koushanfar, F., Lu, H., Markov, I.L., Oliver, M., Stroobandt, D., Sylvester, D.: GTX: the MARCO GSRC technology extrapolation system. In: Design Automation Conference, pp. 693–698 (2000)Google Scholar
  14. 14.
    Vander Biest, A., Richard, A., Milojevic, D., Robert, F.: A framework introducing model reversibility in soc design space exploration. In: Vassiliadis, S., Bereković, M., Hämäläinen, T.D. (eds.) SAMOS 2007. LNCS, vol. 4599, pp. 211–221. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Davis, J.: Ptolemy ii - heterogeneous concurrent modeling and design in java (2000)Google Scholar
  16. 16.
    Panagopoulos, I.: Models, specification languages and their interrelationship models, specification languages and their interrelationship for system level design. Technical report, HPCL,The George Washington University (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexis Vander Biest
    • 1
  • Alienor Richard
    • 1
  • Dragomir Milojevic
    • 1
  • Frederic Robert
    • 1
  1. 1.BEAMS DepartmentUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations