Advertisement

Modelling Prostate Gland Motion for Image-Guided Interventions

  • Yipeng Hu
  • Dominic Morgan
  • Hashim Uddin Ahmed
  • Doug Pendsé
  • Mahua Sahu
  • Clare Allen
  • Mark Emberton
  • David Hawkes
  • Dean Barratt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5104)

Abstract

A direct approach to using finite element analysis (FEA) to predict organ motion typically requires accurate boundary conditions, which can be difficult to measure during surgical interventions, and accurate estimates of soft-tissue properties, which vary significantly between patients. In this paper, we describe a method that combines FEA with a statistical approach to overcome these problems. We show how a patient-specific, statistical motion model (SMM) of the prostate gland, generated from FE simulations, can be used to predict the displacement field over the whole gland given sparse surface displacements. The method was validated using 3D transrectal ultrasound images of the prostates of five patients, acquired before and after expanding the balloon covering the ultrasound probe. The mean target registration error, calculated for anatomical landmarks within the gland, was 1.9mm.

Keywords

Biomechanical modelling finite element analysis image-guided interventions prostate cancer ultrasound statistical shape modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirkham, A.P., et al.: How good is MRI at detecting and characterising cancer within the prostate? Eur. Urol. 50, 1163–1174 (2006)CrossRefGoogle Scholar
  2. 2.
    Byrne, T.E.: A review of prostate motion with considerations for the treatment of prostate cancer. Medical Dosimetry 30, 155–161 (2005)CrossRefGoogle Scholar
  3. 3.
    Morgan, D., et al.: Registration of preoperative MR to intraoperative ultrasound images for guiding minimally-invasive prostate interventions. In: Proc. MIUA, pp. 181–185 (2007)Google Scholar
  4. 4.
    Chi, Y., et al.: A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models. Med. Phys. 33, 421–433 (2006)CrossRefGoogle Scholar
  5. 5.
    Mohamed, A., et al.: A combined statistical and biomechanical model for estimation of intra-operative prostate deformation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 452–460. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Alterovitz, R., et al.: Registration of MR prostate images with biomechanical modeling and nonlinear parameter estimation. Med. Phys. 33, 446–454 (2006)CrossRefGoogle Scholar
  7. 7.
    Bharatha, A., et al.: Evaluation of three-dimensional finite element-based deformable registration of pre-and intraoperative prostate imaging. Med. Phys. 28, 2551–2560 (2001)CrossRefGoogle Scholar
  8. 8.
    Crouch, J.R., et al.: Automated finite element analysis for deformable registration of prostate images. IEEE Trans. on Med. Imag. 26, 1379–1390 (2007)CrossRefGoogle Scholar
  9. 9.
    Tanner, C., et al.: Factors influencing the accuracy of biomechanical breast models. Med. Phys. 33, 1758–1769 (2006)CrossRefGoogle Scholar
  10. 10.
    Taylor, Z.A., et al.: Real-time nonlinear finite element analysis for surgical simulation using graphics processing units. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 701–708. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Davatzikos, C., et al.: A framework for predictive modelling of anatomical deformations. IEEE Trans. Med. Image 20, 836–843 (2001)CrossRefGoogle Scholar
  12. 12.
    Thompson, S., et al.: Use of a CT statistical deformation model for multi-modal pelvic bone segmentation. In: Proc. SPIE Medical Imaging (2008)Google Scholar
  13. 13.
    Schallenkamp, J., et al.: Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging. Int. J. Radiation Oncology Biol. Phys. 63, 800–811 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yipeng Hu
    • 1
  • Dominic Morgan
    • 1
  • Hashim Uddin Ahmed
    • 2
  • Doug Pendsé
    • 3
    • 4
  • Mahua Sahu
    • 3
  • Clare Allen
    • 4
  • Mark Emberton
    • 2
  • David Hawkes
    • 1
  • Dean Barratt
    • 1
  1. 1.Centre for Medical Image Computing, Department of Medical Physics & Bioengineering  
  2. 2.Department of Urology, Division of Surgery & Interventional Science  
  3. 3.National Medical Laser CentreUniversity College LondonLondonUK
  4. 4.Department of RadiologyUniversity College HospitalLondonUK

Personalised recommendations