Advertisement

An Integrated Approach for Reconstructing a Surface Model of the Proximal Femur from Sparse Input Data and a Multi-Level Point Distribution Model

  • Guoyan Zheng
  • Miguel A. González Ballester
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5104)

Abstract

In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific surface model of the proximal femur from intra-operatively available sparse data, which may consist of sparse point data or a limited number of calibrated fluoroscopic images. We conducted experiments on clinical datasets as well as on datasets from cadaveric bones. Our experimental results demonstrate promising accuracy of the present approach. Further extension to reconstructing a surface model from pre-operative biplanar X-ray radiographs is discussed.

Keywords

reconstruction point distribution model statistical shape analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Livyatan, H., Yaniv., Z., Joskowicz, Z.: Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE T. Med. Imaging 22(11), 1395–1406 (2003)CrossRefGoogle Scholar
  2. 2.
    Zheng, G., Rajamani, K.T., Nolte, L.-P.: Use of a dense point distribution model in a three-stage anatomical shape reconstruction from sparse information for computer assisted orthopaedic surgery: a preliminary study. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 52–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Zheng, G., Dong, X., Nolte, L.-P.: Robust and accurate reconstruction of patient-specific 3D surface models from sparse point sets: a sequential three-stage trimmed optimization approach. In: Yang, G.-Z., Jiang, T., Shen, D., Gu, L., Yang, J. (eds.) MIAR 2006. LNCS, vol. 4091, pp. 68–75. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Zheng, G.: A novel 3D/2D correspondence building method for anatomy-based registration. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 75–83. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Zheng, G., et al.: Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and point distribution model. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 25–32. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley, Chichester (1998)zbMATHGoogle Scholar
  7. 7.
    Kendall, D.: A survey of the statistical theory of shape. Statistical Science 4(2), 87–99 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Small, C.: The statistical Theory of Shape. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  9. 9.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  10. 10.
    Cootes, T.F., et al.: Active shape models – their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  11. 11.
    Corouge, I., et al.: Interindividual functional mapping: a nonlinear local approach. Neuroimage 19, 1337–1348 (2003)CrossRefGoogle Scholar
  12. 12.
    Fleute, M., Lavallée, S.: Building a complete surface model from sparse data using statistical shape models: application to computer assisted knee surgery system. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 879–887. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Fleute, M., Lavallée, S., Julliard, R.: Incorporating a statistically based shape model into a system for computer-assisted anterior cruciate ligament surgery. Medical Image Analysis 3(3), 209–222 (1999)CrossRefGoogle Scholar
  14. 14.
    Rajamani, K.T., Styner, M., Joshi, S.C.: Bone model morphing for enhanced surgical visualization. Proceedings of the ISBI 2004, 1255–1258 (2004)Google Scholar
  15. 15.
    Rajamani, K.T., et al.: A novel and stable approach to anatomical structure morphing for enhanced intraoperative 3D visualization. In: Proceedings of the SPIE Medical Imaging: Visualization, Image-guided Procedures, and Display, vol. 5744, pp. 718–725 (2005)Google Scholar
  16. 16.
    Fleute, M., Lavallée, S.: Nonrigid 3-D/2-D registration of images using statistical models. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 138–147. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Yao, J., Taylor, R.H.: Assessing accuracy factors in deformable 2D/3D medical image registration using a statistical pelvis model. In: Proceedings of ICCV 2003, vol. 2, pp. 1329–1334. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  18. 18.
    Lamecker, H., Wenckebach, T.H., Hege, H.-C.: Atlas-based 3D-shape reconstruction from X-ray images. In: Proceedings of ICPR 2006, vol. 1, pp. 371–374 (2006)Google Scholar
  19. 19.
    Benameur, S., et al.: 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Computerized Medical Imaging and Graphics 27, 321–337 (2003)CrossRefGoogle Scholar
  20. 20.
    Benameur, S., et al.: A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine. IEEE Transactions on Biomedical Engineering 52(12), 2041–2057 (2005)CrossRefGoogle Scholar
  21. 21.
    Chan, C.S.K., Edwards, P.J., Hawkes, D.J.: Integration of ultrasound-based registration with statistical shape models for computer-assisted orthopaedic surgery. In: Proceedings of SPIE Medical Imaging 2003: Image Processing, vol. 5032, pp. 414–424 (2003)Google Scholar
  22. 22.
    Chan, C.S.K., Barratt, D.C., Edwards, P.J., Penney, G.P., Slomczykowski, M., Carter, T.J., Hawkes, D.J.: Cadaver validation of the use of ultrasound for 3D model instantiation of bony anatomy in image guided orthopaedic surgery. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 397–404. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Talib, H., Rajamani, K.T., Kowal, J., Nolte, L.-P., Styner, M., Gonzalez Ballester, M.A.: A comparison study assessing the feasibility of ultrasound-initialized deformable bone models. Computer Aided Surgery 10(5/6), 293–299 (2005)CrossRefGoogle Scholar
  24. 24.
    Talib, H., et al.: Feasibility of 3D ultrasound-initialized deformable bone-modeling. In: Proceedings of CAOS 2006, pp. 519–522 (2006)Google Scholar
  25. 25.
    Yao, J., Taylor, R.H.: Tetrahedral mesh modeling of density data for anatomical atlases and intensity-based registration. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 531–540. Springer, Berlin (2000)Google Scholar
  26. 26.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics, SIGGRAPH 1999, pp. 187–194 (1999)Google Scholar
  27. 27.
    Styner, M., et al.: Evaluation of 3D correspondence methods for modeling building. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003)Google Scholar
  28. 28.
    Brechbuehler, C., Gerig, G., Kuebler, O.: Parameterization of Closed Surfaces for 3D Shape Description. Comput Vision and Image Under 61, 154–170 (1995)CrossRefGoogle Scholar
  29. 29.
    Davies, R.H., Twining, C.H., et al.: 3D statistical shape models using direct optimization of description length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–20. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Loop, C.T.: Smooth subdivision surfaces based on triangles. M.S. Thesis, Department of Mathematics, University of Utah (August 1987)Google Scholar
  31. 31.
    Besl, P., McKay, N.D.: A method for registration of 3D shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  32. 32.
    Bookstein, F.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transaction on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)zbMATHCrossRefGoogle Scholar
  33. 33.
    Moreland, J.R.: Primary Total Hip Arthroplasty. In: Chapman, M.W. (ed.) Operative Orthopaedics, 1st edn., vol. 1, pp. 679–693. J.B Lippincott, Philadelphia (1988)Google Scholar
  34. 34.
    Schumann, S., Zheng, G., Nolte, L.-P.: Calibration of X-ray radiographs and its feasible application for 2D/3D reconstruction of the proximal femur. IEEE EMBS (submitted, 2008)Google Scholar
  35. 35.
    Zheng, G., Schumann, S.: 3-D reconstruction of a surface model of the proximal femur from digital biplanar radiographs. IEEE EMBS (submitted, 2008)Google Scholar
  36. 36.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: measuring error between surface using the Hausdorff distance. In: Proceedings of the IEEE International Conference on Multimedia and Expo 2002 (ICME), vol. I, pp. 705–708 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guoyan Zheng
    • 1
  • Miguel A. González Ballester
    • 1
  1. 1.MEM Research Center - ISTBUniversity of BernBernSwitzerland

Personalised recommendations