Advertisement

Constitutive Modelling of Endothelium Denudation for Finite Element Simulation of Angioplasty

  • Sébastien Delorme
  • Rouwayda El-Ayoubi
  • Patricia Debergue
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5104)

Abstract

This study aims at characterizing and modelling the effect of mechanical factors on endothelial denudation during angioplasty, such as normal force between balloon and artery, stretching of arterial walls, and relative displacement between contacting surfaces. Friction damage was applied to porcine aorta samples with different contact forces, relative displacements, and biplanar stretching conditions. After the tests, endothelium denudation was quantified by isolating and counting the remaining endothelial cells. Using multiple-regression analysis, a constitutive model is proposed for integration in finite element software. This model will help optimize balloon and stent deployment conditions to minimize the amount of damage to the endothelium, and eventually to reduce the occurrence of restenosis.

Keywords

angioplasty restenosis endothelium stretch friction pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kiemeneij, F., Serruys, P.W., Macaya, C., et al.: Continued benefit of coronary stenting versus balloon angioplasty: five-year clinical follow-up of Benestent-I trial. J. Am. Coll. Cardiol. 37, 1598–1603 (2001)CrossRefGoogle Scholar
  2. 2.
    Serruys, P.W., Luijten, H.E., Beatt, K.J., et al.: Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 77, 361–371 (1988)Google Scholar
  3. 3.
    Hoffmann, R., Mintz, G.S., Mehran, R., et al.: Tissue proliferation within and surrounding Palmaz-Schatz stents is dependent on the aggressiveness of stent implantation technique. Am. J. Cardiol. 83, 1170–1174 (1999)CrossRefGoogle Scholar
  4. 4.
    Koyama, J., Owa, M., Sakurai, S., et al.: Relation between vascular morphologic changes during stent implantation and the magnitude of in-stent neointimal hyperplasia. Am. J. Cardiol. 86, 753–758 (2000)CrossRefGoogle Scholar
  5. 5.
    Schwartz, R.S., Huber, K.C., Murphy, J.G., et al.: Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J. Am. Coll. Cardiol. 19, 267–274 (1992)CrossRefGoogle Scholar
  6. 6.
    Kuntz, R.E., Safian, R.D., Carrozza, J.P., et al.: The importance of acute luminal diameter in determining restenosis after coronary atherectomy or stenting. Circ. 86, 1827–1835 (1992)Google Scholar
  7. 7.
    Capron, L., Bruneval, P.: Influence of applied stress on mitotic response of arteries to injury with a balloon catheter: quantitative study in rat thoracic aorta. Cardiovasc. Res. 23, 941–948 (1989)CrossRefGoogle Scholar
  8. 8.
    Olson, N.E., Chao, S., Lindner, V., Reidy, M.A.: Intimal smooth muscle cell proliferation after balloon catheter injury. The role of basic fibroblast growth factor. Am. J. Pathol. 140, 1017–1023 (1992)Google Scholar
  9. 9.
    Jamal, A., Bendeck, M., Langille, B.L.: Structural changes and recovery of function after arterial injury. Arterioscler. Thromb. Vasc. Biol. 12, 307–317 (1992)Google Scholar
  10. 10.
    Rogers, C., Tseng, D.Y., Squire, J.C., Edelman, E.R.: Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84, 378–383 (1999)Google Scholar
  11. 11.
    Caldwell, R.A., Woodell, J.E., Ho, S.P., et al.: In vitro evaluation of phosphonylated low-density polyethylene for vascular applications. J. Biomed. Mater. Res. 62, 514–524 (2002)CrossRefGoogle Scholar
  12. 12.
    Multiple Regression. In: NCSS User’s Guide, pp. 305-1–305-98 (2007)Google Scholar
  13. 13.
    Umeda, H., Iwase, M., Kanda, H.: Promising efficacy of primary gradual and prolonged balloon angioplasty in small coronary arteries: A randomized comparison with cutting balloon angioplasty and conventional balloon bngioplasty. Am. Heart J. 147, 1–8 (2004)CrossRefGoogle Scholar
  14. 14.
    Weiss, T., Leibovitz, D., Katz, I., Danenberg, C., Varshitsky, B., Lotan, C.: The value of computerized angioplasty in patients undergoing coronary stenting: a prospective, randomized trial. Am. J. Cardiol. 100, 118 (2007)Google Scholar
  15. 15.
    Virues Delgadillo, J.O., Delorme, S., DiRaddo, R., Hatzikiriakos, S.: Stiffness of porcine aortas decreases with strain-rate. Simulation in Healthcare 2, 156 (2007)Google Scholar
  16. 16.
    Laroche, D., Delorme, S., Anderson, T., DiRaddo, R.: Computer prediction of friction in balloon angioplasty and stent implantation. In: Harders, M., Székely, G. (eds.) ISBMS 2006. LNCS, vol. 4072, pp. 1–8. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sébastien Delorme
    • 1
  • Rouwayda El-Ayoubi
    • 1
  • Patricia Debergue
    • 1
  1. 1.Industrial Materials InstituteBouchervilleCanada

Personalised recommendations