On the Application of Model Reduction Techniques to Real-Time Simulation of Non-linear tissues

  • Siamak Niroomandi
  • Icíar Alfaro
  • Elías Cueto
  • Francisco Chinesta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5104)


In this paper we introduce a new technique for the real-time simulation of non-linear tissue behavior based on a model reduction technique known as Proper Orthogonal (POD) or Karhunen-Loève Decompositions. The technique is based upon the construction of a complete model (using Finite Element modelling or other numerical technique, for instance, but possibly from experimental data) and the extraction and storage of the relevant information in order to construct a model with very few degrees of freedom, but that takes into account the highly non-linear response of most living tissues. We present its application to the simulation of palpation a human cornea and study the limitations and future needs of the proposed technique.


Proper Orthogonal Decomposition Reduce Order Modelling Haptic Feedback Haptic Device Deformable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alastrué, V., Calvo, B., Peña, E., Doblaré, M.: Biomechanical modeling of refractive corneal surgery. Journal of Biomechanical Engineering-Trasactions of the ASME 128, 150–160 (2006)CrossRefGoogle Scholar
  2. 2.
    Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics (SIGGRAPH 2005) 24(3), 982–990 (2005)CrossRefGoogle Scholar
  3. 3.
    Basdogan, C.: Real-time simulation dynamically deformable finite element models using modal analysis and spectral lanczos decomposition methods. In: Medicine meets virtal reality 2001, pp. 46–52 (2001)Google Scholar
  4. 4.
    Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Computer Graphics Forum 15(3), 57–66 (1996)CrossRefGoogle Scholar
  5. 5.
    Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. In: Hagen, H. (ed.) IEEE Transactions on Visualization and Computer Graphics, vol. 5(1), pp. 62–73. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  6. 6.
    Debunne, G., Desbrun, M., Cani, M.-P., Barr, A.H.: Dynamic real-time deformations using space and time adaptive sampling. In: Proceedings of the ACM SIGGRAPH conference, pp. 31–36 (2001)Google Scholar
  7. 7.
    Delingette, H., Ayache, N.: Soft tissue modeling for surgery simulation. In: Ayache, N., Ciarlet, P. (eds.) Computational Models for the Human Body. Handbook of Numerical Analysis, pp. 453–550. Elsevier, Amsterdam (2004)CrossRefGoogle Scholar
  8. 8.
    Delingette, H.: Towards realistic soft tissue modeling in medical simulation. Technical Report INRIA RR-3506Google Scholar
  9. 9.
    Karhunen, K.: Uber lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae, ser. Al. Math. Phys. 37 (1946)Google Scholar
  10. 10.
    Loève, M.M.: Probability theory, 3rd edn., Van Nostrand, Princeton, NJ. The University Series in Higher Mathematics (1963)Google Scholar
  11. 11.
    Meier, U., Lopez, O., Monserrat, C., Juan, M.C., Alcaniz, M.: Real-time deformable models for surgery simulation: a survey. Computer Methods and Programs in Biomedicine 77(3), 183–197 (2005)CrossRefGoogle Scholar
  12. 12.
    Ryckelynck, D., Chinesta, F., Cueto, E., Ammar., A.: On the a priori Model Reduction: Overview and recent developments. Archives of Computational Methods in Engineering 12(1), 91–128 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Siamak Niroomandi
    • 1
  • Icíar Alfaro
    • 1
  • Elías Cueto
    • 1
  • Francisco Chinesta
    • 2
  1. 1.Group of Structural Mechanics and Material Modelling. Aragón Institute of Engineering ResearchI3A. Universidad de ZaragozaZaragozaSpain
  2. 2.Laboratoire de Mecanique des Systemes et des Procedes.UMR 8106 CNRS-ENSAM-ESEM.ParisFrance

Personalised recommendations