Advertisement

Mechanism and Localization of Wall Failure During Abdominal Aortic Aneurysm Formation

  • Dominik Szczerba
  • Robert McGregor
  • Krishnamurthy Muralidhar
  • Gábor Székely
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5104)

Abstract

Our previously presented model of abdominal aneurysm formation allowed to simulate aneurysm dynamics relying on a postulated initial wall failure without being able to predict the actual location of such weakening. In this study we investigate what factors can trigger pathology progression at positions eventually observed in reality. We consider mechanical effects inside the arterial wall and their possible contributions to the formation of an aneurysm. Using a computer model we demonstrate the existence of wall regions susceptible to failure due to increased oscillatory mechanical loading. We find these regions to be uniquely correlated with actually observed aneurysm locations. We demonstrate that wall fatigue and failure are probable factors influencing the formation of an abdominal aortic aneurysm.

Keywords

Abdominal Aortic Aneurysm aneurysm formation arterial wall mechanics fluid-structure interaction computational fluid dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gillum, R.F.: Epidemiology of aortic aneurysm in the United States. Journal of Clinical Epidemiology 48(11), 1289–1298 (1995)CrossRefGoogle Scholar
  2. 2.
    Gibbons, G.H., Dzau, V.J.: The Emerging Concept of Vascular Remodeling. N Engl J Med. 330(20), 1431–1438 (1994)CrossRefGoogle Scholar
  3. 3.
    Lasheras, J.C.: The Biomechanics of Arterial Aneurysms. Annual Review of Fluid Mechanics 39(1), 293–319 (2007)CrossRefGoogle Scholar
  4. 4.
    Cheng, C.P., Herfkens, R.J., Taylor, C.A.: Abdominal aortic hemodynamic conditions in healthy subjects aged 50-70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis 168(2), 323–331 (2003)CrossRefGoogle Scholar
  5. 5.
    Finol, E.A., Amon, C.H.: Flow-induced Wall Shear Stress in Abdominal Aortic Aneurysms: Part I - Steady Flow Hemodynamics. Computer Methods in Biomechanics and Biomedical Engineering 5(4), 309–318 (2002)CrossRefGoogle Scholar
  6. 6.
    Raghavan, M.L., et al.: Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. Journal of Vascular Surgery 31(4), 760–769 (2000)CrossRefGoogle Scholar
  7. 7.
    Chatziprodromou, I., Poulikakos, D., Ventikos, Y.: On the influence of variation in haemodynamic conditions on the generation and growth of cerebral aneurysms and atherogenesis: A computational model. Journal of Biomechanics 40(16), 3626–3640 (2007)CrossRefGoogle Scholar
  8. 8.
    Leung, J.H., et al.: Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. BioMedical Engineering OnLine 5(33) (2006)Google Scholar
  9. 9.
    Scotti, C.M., et al.: Fluid-Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness. Biomed. Eng. Online 4, 64 (2005)CrossRefGoogle Scholar
  10. 10.
    Zhao, S.Z., Xu, X.Y., Collins, M.W.: The numerical analysis of fluid-solid interactions for blood flow in arterial structures Part 1: a review of models for arterial wall behaviour. Proceedings of the Institution of Mechanical Engineers. Part H: Journal of Engineering in Medicine V212(4), 229–240 (1998)CrossRefGoogle Scholar
  11. 11.
    Watton, P., Hill, N., Heil, M.: A mathematical model for the growth of the abdominal aortic aneurysm. Biomechanics and Modeling in Mechanobiology 3(2), 98–113 (2004)CrossRefGoogle Scholar
  12. 12.
    Chatziprodromou, I., et al.: Haemodynamics and wall remodelling of a growing cerebral aneurysm: A computational model. Journal of Biomechanics 40(2), 412–426 (2007)CrossRefGoogle Scholar
  13. 13.
    McGregor, R., Szczerba, D., Székely, G.: Simulation of a Healthy and a Diseased Abdominal Aorta. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 227–234. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Salsac, A.-V., Sparks, S.R., Lasheras, J.: Hemodynamic Changes Occurring during the Progressive Enlargement of Abdominal Aortic Aneurysms. Annals of Vascular Surgery 18(1), 14–21 (2004)CrossRefGoogle Scholar
  15. 15.
    Orlanski, I.: A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics 21(3), 251–269 (1976)zbMATHCrossRefGoogle Scholar
  16. 16.
    Humphrey, J.D., DeLange, S.: An Introduction to Biomechanics. In: Solids and Fluids, Analysis and Design. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Schijve, J.: Fatigue of Structures and Materials. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element MethodGoogle Scholar
  19. 19.
    Szczerba, D., McGregor, R., Székely, G.: High Quality Surface Mesh Generation for Multi-physics Bio-medical Simulations. In: Computational Science – ICCS 2007, pp. 906–913 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dominik Szczerba
    • 1
  • Robert McGregor
    • 1
  • Krishnamurthy Muralidhar
    • 2
  • Gábor Székely
    • 1
  1. 1.Department of Electrical EngineeringETH ZürichSwitzerland
  2. 2.Department of Mechanical EngineeringIITKanpurIndia

Personalised recommendations