Advertisement

Effect of Friction and Material Compressibility on Deformable Modeling of Human Lung

  • Adil Al-Mayah
  • Joanne Moseley
  • Mike Velec
  • Kristy Brock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5104)

Abstract

A three dimensional finite element model has been developed to investigate the sliding mechanics and compressibility of human lungs of seven lung cancer patients. The model consists of both lungs, tumor, and chest wall. The interaction between lungs and chest cavities is modeled using surface-based contact with coefficient of friction of 0, 0.1 and 0.2. Experimentally measured hyperelastic material properties of the lungs are applied in the model with different degrees of compressibility using Poisson’s ratio (ν) of 0.35, 0.4, 0.45 and 0.499. The analytical results are compared to actual measurements of the bifurcation of the vessels and bronchi in the lungs and tissues. The least absolute average error of 0.21(±0.04) cm is reached when frictionless contact surfaces with hyperelastic material and Poisson’s ratio of 0.35 and 0.4 are applied. The error slightly changes in contact models as the coefficient of friction and Poisson’s ratio increases. However, Poisson’s ratio has more effect in models without contact surfaces where the average error changes from 0.33(±0.11) cm to 0.26(±0.07) cm as the Poisson’s ratio increased from 0.35 to 0.499.

Keywords

Cancer Contact Friction Lungs Hyperelastic Finite element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McInerney, T., Tersopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal., 191–108 (1996)Google Scholar
  2. 2.
    Rietzel, E., Chen, G.T.Y., Choi, N.C., Willet, C.G.: Four dimensional image-based treatment planning: target, volume segmintation and dose calculation in the presence of respiratory motion. Int. J.Radiation Oncology Biol. Phys. 61, 1535–1550 (2005)Google Scholar
  3. 3.
    Brock, K.K.: Image registration in intensity-modulated radiation therapy, image-guided radiation therapy and stereotactic body radiation therapy. Front. Radiat. Ther. Oncol. 40, 94–115 (2007)CrossRefGoogle Scholar
  4. 4.
    Yan, D., Jaffray, D.A., Wang, J.W.: A model to accumulate fractionated dose in a deforming organ. Int. J. Radiation Oncology Biol. Phys. 44, 665–675 (1999)CrossRefGoogle Scholar
  5. 5.
    Bharath, A., Hirose, M., Hata, N., Warfield, S.K., Ferrant, M., Zou, K.H., Suarez-Santana, E., Ruis-Alzola, J., Kikinis, R., Jolesz, F.A., Tempany, C.M.C.: Evaluation of three-dimensional finite element-based deformable registration of pre- and intraoperative prostate imaging. Med. Phys. 28, 2551–2560 (2001)CrossRefGoogle Scholar
  6. 6.
    Brock, K.K., Sharpe, M.B., Dawson, L.A., Kim, S.M., Jaffray, D.A.: Accuracy of finite element model-based multi-organ deformable image registration. Med. Phys. 32, 1647–1659 (2005)CrossRefGoogle Scholar
  7. 7.
    Brock, K.K., Dawson, L.A., Sharpe, M.B., Moseley, D.J., Jaffray, D.A.: Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue. Int. J. Radiation Oncology Biol. Phys. 64, 1245–1254 (2006)Google Scholar
  8. 8.
    Mead, J., Takishima, T., Leith, D.: Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28, 596–608 (1970)Google Scholar
  9. 9.
    West, J.B., Matthews, F.L.: Stresses, strains, and surface pressures in the lung caused by its weight. J. Appl. Physiol. 32, 332–345 (1972)Google Scholar
  10. 10.
    Sundaram, S.H., Feng, C.C.: Finite element analysis of the human thorax. J. Biomech. 10, 505–516 (1977)CrossRefGoogle Scholar
  11. 11.
    Zeng, Y.J., Yager, D., Fung, Y.C.: Measurement of the mechanical properties of the human lung tissue. J. Biomech. Eng. 109, 169–174 (1987)CrossRefGoogle Scholar
  12. 12.
    De Wilde, R., Clement, J., Hellemans, J.M., Decramer, M., Demedts, M., Boving, R., Van DeWoestijne, K.P.: Model of elasticity of the human lung. J. Appl. Physiol. 51, 254–261 (1981)Google Scholar
  13. 13.
    Villard, P., Beuve, M., Shariat, B., Baudet, V., Jaillet, F.: Simulation of lung behaviour with finite elements: Influence of bio-mechanical parameters. In: Proceedings of the 3rd International Conference on Medical Information Visualisation-BioMedical Visualisation, pp. 9–14 (2005)Google Scholar
  14. 14.
    Loring, S.E., Brown, R.E., Gouldstone, A., Butler, J.P.: Lubrication regimes in mesothelial sliding. Journal of Biomechanics 38, 2390–2396 (2005)CrossRefGoogle Scholar
  15. 15.
    Zhang, T., Orton, N.P., Rockwell Mackie, T., Paliwal, B.R.: Technical note: A novel boundary condition using contact elements for finite element based deformable image registration. Med. Phys. 31, 2412–2415 (2004)CrossRefGoogle Scholar
  16. 16.
    Al-Mayah, A., Moseley, J., Brock, K.K.: Contact surface and material nonlinearity modeling of human lungs. Phys. Med. Biol. 53, 305–317 (2008)CrossRefGoogle Scholar
  17. 17.
    Widmaier, E.P., Raff, H., Strang, K.T.: Vander’s human physiology: the mechanisms of human body function, 10th edn. McGraw-Hill, New York (2006)Google Scholar
  18. 18.
    ABAQUS 6.7 Manual, Hibbitt, Karlsson & Sorensen, Inc.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Adil Al-Mayah
    • 1
  • Joanne Moseley
    • 1
  • Mike Velec
    • 1
  • Kristy Brock
    • 1
  1. 1.Radiation Medicine Program, Princess Margaret HospitalTorontoCanada

Personalised recommendations