A Real-Time Predictive Simulation of Abdominal Organ Positions Induced by Free Breathing

  • Alexandre Hostettler
  • Stéphane A. Nicolau
  • Luc Soler
  • Yves Rémond
  • Jacques Marescaux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5104)


Prediction of abdominal organ positions during free breathing is a major challenge from which several medical applications could benefit. For instance, in radiotherapy it would reduce the healthy tissue irradiation. In this paper, we present a method to predict in real-time the abdominal organs position during free breathing. This method needs an abdo-thoracic preoperative CT image, a second one limited to the diaphragm zone, and a tracking of the patient skin motion. It also needs the segmentation of the skin, the viscera volume and the diaphragm in both preoperative images. First, a physical analysis of the breathing motion shows it is possible to predict abdominal organs position from the skin position and a modeling of the diaphragm motion. Then, we present our original method to compute a deformation field that considers the abdominal and thoracic breathing influence. Finally, we show on two human data that our simulation model can predict several organs position at 50 Hz with accuracy within 2-3 mm.


Predictive simulation patient dependant modeling free breathing real-time sliding motion skin tracking radiotherapy deformable model incompressibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balter, J.M., Lam, K.L., McGinn, C.J., Lawrence, T.S., Ten Haken, R.K.: Improvement of CT-based treatment planning models of abdominals targets using static exhale imaging. Int. J. Radiation Oncology Biol. Phys. 41(4), 939–943 (1998)Google Scholar
  2. 2.
    Brock, K.K., Sharpe, M.B., Dawson, L.A., Kim, S.M., Jaffray, D.A.: Accuracy of finite element model-based multi-organ deformable image registration. Med. Phys. 32(6), 1647–1659 (2005)CrossRefGoogle Scholar
  3. 3.
    Clifford, M.A., Banovac, F., Levy, E., Cleary, K.: Assessment of hepatic motion secondary to respiration for computer assisted interventions. Computer Aided Surgery 7, 291–299 (2002)CrossRefGoogle Scholar
  4. 4.
    Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. The Visual Computer 16(8), 437–452 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Delingette, H., Cotin, S., Ayache, N.: Efficient linear elastic models of soft tissues for real-time surgery simulation. In: MMVR 7 (Medicine Meets Virtual Reality), pp. 139–151 (1999)Google Scholar
  6. 6.
    Didier, A.L., Villard, P.F., Bayle, J.Y., Beuve, M., Shariat, B.: Breathing thorax simulation based on pleura behaviour and rib kinematics. Information Visualisation - MediVis, 35-40 (2007)Google Scholar
  7. 7.
    Schwartza, J.M., Denningerb, M., Rancourtb, D., Moisanc, C., Laurendeau, D.: Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Medical Image Analysis 9(2), 103–112 (2005)CrossRefGoogle Scholar
  8. 8.
    Hostettler, A., Nicolau, S.A., Soler, L., Remond, Y.: Toward an accurate real time simulation of internal organ motions during free breathing from skin motion tracking and an a priori knowledge of the diaphragm motion. Int. J. of Computer assisted radiology and surgery 2(suppl. 1), 100–102 (2007)Google Scholar
  9. 9.
    Hostettler, A., Nicolau, S.A., Soler, L., Remond, Y.: Real time simulation of organ motions induced by breathing: First evaluation on patient data. In: Harders, M., Székely, G. (eds.) ISBMS 2006. LNCS, vol. 4072, pp. 9–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Remouchamps, V.M., Vicini, F.A., Sharpe, M.B., Kestin, L.L., Martinez, A.A., Wong, J.W.: Significant reductions in heart and lung doses using deep inspiration breathe hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int. J. Radiation Oncology Biol. Phys. 55, 392–406 (2003)Google Scholar
  11. 11.
    Sarrut, D., Boldea, V., Miguet, S., Ginestet, C.: Simulation of 4d ct images from deformable registration between inhale and exhale breath-hold ct scans. Medical physics 33(3), 605–617 (2006)CrossRefGoogle Scholar
  12. 12.
    Secomb, T.W., El-Kareh, A.W.: A theoretical model for the elastic properties of very soft tissues. Biorheology 38(4), 305–317 (2001)Google Scholar
  13. 13.
    Kühnapfel, U., Çakmak, H.K., Maaß, H.: Endoscopic surgery training using virtual reality and deformable tissue simulation. Computer and Graphics 24(5), 671–682 (2000)CrossRefGoogle Scholar
  14. 14.
    Wong, J.W., Sharpe, M.B., Jaffray, D.A., Kini, V.R., Robertson, J.M., Stromberg, J.S., Martinez, A.A.: The use of active breathing control (abc) to reduce margin for breathing motion. Int. J. Radiation Oncology Biol. Phys. 44(4), 911–919 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexandre Hostettler
    • 1
    • 2
  • Stéphane A. Nicolau
    • 1
  • Luc Soler
    • 1
  • Yves Rémond
    • 2
  • Jacques Marescaux
    • 1
  1. 1.IRCAD-Hôpital Civil, Virtual-surgStrasbourg CedexFrance
  2. 2.Institut de Mécanique des Fluides et des SolidesStrasbourgFrance

Personalised recommendations