Physically Based Finite Element Model of the Face

  • Giuseppe Barbarino
  • Mahmood Jabareen
  • Juergen Trzewik
  • Edoardo Mazza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5104)


The proposed 3D finite element model of the face aims at a faithful representation of the anatomy, the mechanical interactions between different tissues, and the non linear force deformation characteristics of tissues. Bones and soft tissues were reconstructed from magnetic resonance images. Non linear constitutive equations are implemented in the numerical model. The corresponding model parameters were selected according to previous work with mechanical measurements on soft facial tissue. Model assumptions concerning tissues geometry, mechanical properties and boundary conditions were validated through comparison with measurements of the facial tissue response to gravity loads and to the application of a pressure inside the oral cavity. In particular, parametric studies were carried out in order to quantify the influence of constitutive model parameters of muscles. The model described in this paper might be used for simulation of plastic and reconstructive surgery and for investigation of the physiology and pathology of face deformation.


Face numerical modeling validation constitutive equations muscles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, Y., Prakash, E.C., Sung, E.: Face alive. J. Visual Lang. Comput. 15(2), 125–160 (2004)CrossRefGoogle Scholar
  2. 2.
    Rohrle, O., Pullan, A.J.: Three-dimensional finite element modelling of muscle forces during mastication. J. Biomech. 40(15), 3363–3372 (2007)CrossRefGoogle Scholar
  3. 3.
    Vogt, F., Lloyd, J.E., Buchaillard, S., Perrier, P., Chabanas, M., Payan, Y., Fels, S.S.: Investigation of Efficient 3D FE Modeling of a Muscle-Activated Tongue. In: Harders, M., Székely, G. (eds.) ISBMS 2006. LNCS, vol. 4072, pp. 19–28. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Gladilin, E., Zachow, S., Deuflhard, P., Hege, H.C.: Anatomy- and physics-based facial animation for craniofacial surgery simulations. Med. Biol. Eng. Comput. 42(2), 167–170 (2004)CrossRefGoogle Scholar
  5. 5.
    Mollemans, W., Schutyser, F., Nadjmi, N., Maes, F., Suetens, P.: Predicting soft tissue deformations for a maxillofacial surgery planning system: From computational strategies to a complete clinical validation. Med. Image Anal. 11(3), 282–301 (2007)CrossRefGoogle Scholar
  6. 6.
    Luboz, V., Chabanas, M., Swider, P., Payan, Y.: Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes. Comput. Methods Biomech. Biomed. Engin. 8(4), 259–265 (2005)CrossRefGoogle Scholar
  7. 7.
    Keeve, E., Girod, S., Kikinis, R., Girod, B.: Deformable modeling of facial tissue for craniofacial surgery simulation. Comput. Aided Surg. 3(5), 228–238 (1998)CrossRefGoogle Scholar
  8. 8.
    Chabanas, M., Luboz, V., Payan, Y.: Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Med. Image Anal. 7(2), 131–151 (2003)CrossRefGoogle Scholar
  9. 9.
    Zachow, S., Gladilin, E., Hege, H.C., Deuflhard, P.: Towards patient specific, anatomy based simulation of facial mimics for surgical nerve rehabilitation. In: CARS 2002: Computer assisted radiology and surgery, Paris, France, pp. 3–6 (2002)Google Scholar
  10. 10.
    Gerard, J.M., Ohayon, J., Luboz, V., Perrier, P., Payan, Y.: Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique - Application to the biomechanics of speech production. Med. Eng. Phys. 27(10), 884–892 (2005)CrossRefGoogle Scholar
  11. 11.
    Mazza, E., Papes, O., Rubin, M.B., Bodner, S.R., Binur, N.S.: Nonlinear elastic-viscoplastic constitutive equations for aging facial tissues. Biomech. Model Mechan. 4(2-3), 178–189 (2005)CrossRefGoogle Scholar
  12. 12.
    Barbarino G., Jabareen M., Trzewik J., Stamatas G., Mazza E., Development and validation of a 3D finite element model of the face. J Biomech. Eng. (submitted) Google Scholar
  13. 13.
    Rubin, M.B., Bodner, S.R.: A three-dimensional nonlinear model for dissipative response of soft tissue. Int. J. Solids Struct. 39(19), 5081–5099 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Duck, F.A.: Physical properties of tissue, a comprehensive reference book. Academic Press, London (1990)Google Scholar
  15. 15.
    Malinauskas, M., Krouskop, T.A., Barry, P.A.: Noninvasive measurement of the stiffness of tissue in the above knee amputation limb. J. Rehab Res. Dev. 26(3), 45–52 (1989)Google Scholar
  16. 16.
    Dresner, M.A., Rose, G.H., Rossmann, P.J., Multhupillai, R., Manduca, A., Ehman, R.L.: Magnetic resonance elastography of skeletal muscle. J. Magn. Res. Imag. 13, 269–276 (2001)CrossRefGoogle Scholar
  17. 17.
    Papazoglou, S., Rump, J.R., Braun, J., Sack, I.: Shear Wave group velocity inversion in MR elastography of human skeletal muscle. J. Magn. Res. Imag. 56, 489–497 (2006)Google Scholar
  18. 18.
    Levinson, S.F., Shinagawa, M., Sato, T.: Sonoelastic determination of human skeletal muscle elasticity. J. Biomech. 28(10), 1145–1154 (1995)CrossRefGoogle Scholar
  19. 19.
    Gennisson, J.L., Cornu, Ch., Catheline, S., Fink, M., Portero, P.: Human muscle hardness assessment during incremental isometric contraction using transient elastography. J Biomech 38(7), 1543–1550 (2005)CrossRefGoogle Scholar
  20. 20.
    Hirsch, S., Frey, S., Thelen, A., Ladriere, N., Hering, P.: Facial topometry using pulsed holography. In: Proc. 7th Int. Symp. Display Holography, St. Asaph, Wales (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Giuseppe Barbarino
    • 1
  • Mahmood Jabareen
    • 1
  • Juergen Trzewik
    • 2
  • Edoardo Mazza
    • 1
    • 3
  1. 1.Institute of Mechanical Systems, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland
  2. 2.Johnson & Johnson MEDICAL GmbHNorderstedtGermany
  3. 3.EMPA, Swiss Federal Laboratory for Materials Testing & ResearchDübendorfSwitzerland

Personalised recommendations