Skip to main content

Active-Vision System Reconfiguration for Form Recognition in the Presence of Dynamic Obstacles

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5098))

Included in the following conference series:

Abstract

This paper presents a novel, agent-based sensing-system reconfigura tion methodology for the recognition of time-varying geometry objects or subjects (targets). A multi-camera active-vision system is used to improve form-recognition performance by selecting near-optimal viewpoints along a prediction horizon. The proposed method seeks to maximize the visibility of such a time-varying geometry in a cluttered, dynamic environment. Simulated experiments clearly show a tangible potential performance gain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: A Survey of Sensor Planning in Computer Vision. IEEE Transactions on Robotics and Automation 11(1), 86–104 (1995)

    Article  Google Scholar 

  2. Miura, J., Ikeuchi, K.: Task-Oriented Generation of Visual Sensing Strategies in Assembly Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(2), 126–138 (1998)

    Article  Google Scholar 

  3. Naish, M.D.: Sensing-System Planning for the Surveillance of Moving Objects. Ph.D. Thesis, University of Toronto, Toronto, ON., Canada (2004)

    Google Scholar 

  4. Zhang, Y., Ji, Q.: Active and Dynamic Information Fusion for Facial Expression Understanding from Image Sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 699–714 (2005)

    Article  MathSciNet  Google Scholar 

  5. Sundaresan, A., Chellappa, R.: Multi-Camera Tracking of Articulated Human Motion Using Motion and Shape Cues. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 131–140. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Derpanis, K.G.: A Review of Vision-Based Hand Gestures. Internal report, Centre for Vision Research, York University, Canada (2004)

    Google Scholar 

  7. Stillman, S., Tanawongsuwan, R., Essa, I.: A System for Tracking and Recognizing Multiple People with Multiple Cameras. In: Audio and Video-Based Biometric Person Authentication, Washington, D.C, pp. 560–566 (1999)

    Google Scholar 

  8. Sakane, S., Sato, T., Kakikura, M.: Model-Based Planning of Visual Sensors Using a Hand-Eye Action Simulator: HEAVEN. In: Proc. of Conf. on Advanced Robotics, Versailles, France, pp. 163–174 (1987)

    Google Scholar 

  9. Yu, S., Tan, D., Tan, T.: A Framework for Evaluating the Effect of View Angle, Clothing, and Carrying Condition on Gait Recognition. In: Proc. of 18th Int. Conf. on Pattern Recognition (ICPR 2006), Hong Kong (2006)

    Google Scholar 

  10. Cowan, C.K., Kovesik, P.D.: Automated Sensor Placement for Vision Task Requirements. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(3), 407–416 (1988)

    Article  Google Scholar 

  11. Anderson, D.P.: Efficient Algorithms for Automatic Viewer Orientation. Comp. & Graphics 9(4), 407–413 (1985)

    Article  Google Scholar 

  12. Reed, M.K., Allen, P.K.: Constraint-Based Sensor Planning for Scene Modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1460–1467 (2000)

    Article  Google Scholar 

  13. Hodge, L., Kamel, M.: An Agent-Based Approach to Multi-sensor Coordination. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 33(5), 648–662 (2003)

    Article  Google Scholar 

  14. Urano, T., Matsui, T., Nakata, T., Mizoguchi, H.: Human Pose Recognition by Memory-Based Hierarchical Feature Matching. In: Proc. of IEEE International Conference on Systems, Man, and Cybernetics, The Hague, Netherlands, pp. 6412–6416 (2004)

    Google Scholar 

  15. Spletzer, J.R., Taylor, C.J.: Dynamic Sensor Planning and Control for Optimally Tracking Targets. Int. Journal of Robotic Research 22(1), 7–20 (2003)

    Article  Google Scholar 

  16. Kamel, M., Hodge, L.: A Coordination Mechanism for Model-Based Multi-Sensor Planning. In: Proc. of the IEEE International Symposium on Intelligent Control, Vancouver, pp. 709–714 (2002)

    Google Scholar 

  17. Spletzer, J., Taylor, C.J.: Sensor Planning and Control in a Dynamic Environment. In: Proc. of IEEE Int. Conf. Robotics and Automation, Washington, D.C, pp. 676–681 (2002)

    Google Scholar 

  18. Goodridge, S.G., Luo, R.C., Kay, M.G.: Multi-Layered Fuzzy Behavior Fusion for Real-Time Control of Systems with Many Sensors. IEEE Transactions on Industrial Electronics 43(3), 387–394 (1996)

    Article  Google Scholar 

  19. Goodridge, S.G., Kay, M.G.: Multimedia Sensor Fusion for Intelligent Camera Control. In: Proc of IEEE/SICE/RSJ Multi-sensor Fusion and integration for intelligent systems, Washington, D.C, pp. 655–662 (1996)

    Google Scholar 

  20. Bakhtari, A.: Multi-Target Surveillance in Dynamic Environments: Sensing-System Reconfiguration. Ph.D. Thesis, University of Toronto, Canada (2006)

    Google Scholar 

  21. Marchand, E., Chaumette, F.: Active Vision for Complete Scene Reconstruction and Exploration. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(1), 65–72 (1999)

    Article  Google Scholar 

  22. Dimitrijevic, M., Lepetit, V., Fua, P.: Human Body Pose Recognition Using Spatio-Temporal Templates. In: ICCV workshop on Modeling People and Human Interaction, Beijing, China, pp. 127–139 (2005)

    Google Scholar 

  23. Cunado, D., Nixon, M.S., Carter, J.: Automatic Extraction and Description of Human Gait Models for Recognition Purposes. Computer Vision and Image Understanding 90, 1–41 (2003)

    Article  Google Scholar 

  24. Veres, G.V., Gordon, L., Carter, J.N., Nixon, M.S.: What Image Information is Important in Silhouette-Based Gait Recognition? In: Proc. of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR 2004), Washington, D.C., pp. 776–782 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco J. Perales Robert B. Fisher

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mackay, M., Benhabib, B. (2008). Active-Vision System Reconfiguration for Form Recognition in the Presence of Dynamic Obstacles. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2008. Lecture Notes in Computer Science, vol 5098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70517-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70517-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70516-1

  • Online ISBN: 978-3-540-70517-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics