Fundamental Models on the Lattice

  • Ludwig D. Faddeev
  • Leon A. Takhtajan
Part of the Springer Series in Soviet Mathematics book series (CLASSICS)

Abstract

Here we shall give a complete list of results pertaining to the Toda model, a fundamental model on the lattice. We will show that the r-matrix approach applies to this case and may be used to prove the complete integrability of the model in the quasi-periodic case. For the rapidly decreasing boundary conditions we will analyze the mapping F from the initial data of the auxiliary linear problem to the transition coefficients and outline a method for solving the inverse problem, i.e. for F−1 constructing. On the basis of the r-matrix approach it will be shown that F is a canonical trans formation to action-angle type variables establishing the complete integrability of the Toda model in the rapidly decreasing case. We shall also define a lattice version of the LL model, the most general integrable lattice system with two-dimensional auxiliary space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A 1979]
    Adler, M.: On a trace functional for formal pseudodifferential operatorsand symplectic structure of the Korteweg-de Vries type equations. Invent. Math. 50, 219–248 (1979)ADSCrossRefGoogle Scholar
  2. [BFT 1986]
    Buslaev, V. S., Faddeev, L. D., Takhtajan, L. A.: Scattering theory for the Korteweg-de Vries equation and its Hamiltonian interpretation. Physica D18, 255–266 (1986)MathSciNetMATHGoogle Scholar
  3. [CK 1973]
    Case, K. M., Kac, M.: A discrete version of the inverse scattering problem. J. Math. Phys. 14, 594–603 (1973)ADSMathSciNetCrossRefGoogle Scholar
  4. [E 1981]
    Eilenberger, G.: Solitons. Mathematical method for Physicists. Berlin, Springer 1981MATHGoogle Scholar
  5. [F 1974 a]
    Flaschka, H.: The Toda lattice. I. Existence of integrals. Phys. Rev. B9, 1924–1925 (1974)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [F 1974b]
    Flaschka, H.: On the Toda lattice. II. Inverse scattering solution. Prog. Theor. Phys. 51, 703–716 (1974)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [FM 1976]
    Flaschka, H., McLaughlin, D.: Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Prog. Theor. Phys. 55, 438–456 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. IK 1981 a] Izergin, A. G., Korepin, V. E.: The lattice sine-Gordon model. Vestn.Leningr. Univ. Ser. Fiz. Khim. 22,84–87 (1981) [Russian]Google Scholar
  9. [IK 1981 b]
    Izergin, A. G., Korepin, V. E.: The lattice quantum Sine-Gordon model. Lett. Math. Phys. 5, 199–205 (1981)ADSMathSciNetCrossRefGoogle Scholar
  10. IK 1982 a] Isergin, A. G., Korepin, V. E.: Lattice regularizations of two-dimensional quantum field models. In: Problems in quantum field theory and statistical physics. 3. Zap. Nauchn. Semin. LOMI 120,75–91 (1982) [Russian]Google Scholar
  11. [IK 1982b]
    Isergin, A. G., Korepin, V. E.: Lattice versions of quantum field theory models in two dimensions. Nucl. Phys. B 205, 401–413 (1982)MathSciNetGoogle Scholar
  12. K 1978] Krichever, I. M.: Algebraic curves and nonlinear difference equations. Usp. Mat. Nauk 33 (4), 215–216 (1978) [Russian]Google Scholar
  13. [M 1974a] Manakov, S. V.: Complete integrability and stochastization of discrete dynamical systems. Zh. Exp. Teor. Fiz. 67, 543-555 (1974)
    [Russian]; English transi. in Soy. Phys. JETP 40, 269–274 (1975)Google Scholar
  14. [M 1974 b] Manakov, S. V.: Inverse scattering method as applied to problems of the physics of waves in nonlinear media. Candidate thesis, Chernogolovka 1974 [Russian]Google Scholar
  15. [S 1982] Sklyanin, E. K.: Algebraic structures connected with the Yang-Baxter equation. Funk. Anal. Priloz. 16 (4), 27-34 (1982)
    Russian]; English transi. in Funct. Anal. Appt 16, 263–270 (1982)Google Scholar
  16. [T 1981]
    Toda, M.: Theory of non-linear lattices. Springer series in solid state physics 20. Berlin-Heidelberg-New York, Springer 1981Google Scholar
  17. [T 1982] Tarasov, V. O.: Classical version of the lattice sine-Gordon model. In: Problems in quantum field theory and statistical physics. 3. Zap. Nauchn. Semin. LOMI 120,173–187 (1982) [Russian]Google Scholar
  18. [TF 1979]
    Takhtajan, L. A., Faddeev, L. D.: The quantum inverse problem method and the XYZ Heisenberg model. Usp. Mat. Nauk 34 (5), 13–63 (1979)[Russian]; English transi. in Russian Math. Surveys 34 (5), 11–68 (1979)Google Scholar
  19. [V 1985] Volkov, A. Yu.: A discrete version of the Landau-Lifshitz equation. In: Problems in quantum field theory and statistical physics. 5. Zap. Nauchn. Semin. LOMI 145, 62–71 (1985) [Russian]Google Scholar
  20. [Z 1973] Zakharov, V. E.: On stochastization of one-dimensional chains of nonlinear oscillators. Zh. Exp. Teor. Fiz. 65, 219-225 (1973)
    Russian]; English transi. in Sov. Phys. JETP 38, 108–110 (1974)Google Scholar
  21. [ZMNP 1980]
    Zakharov, V. E., Manakov, S. V., Novikov, S. P., Pitaievski, L. P.: Theory of Solitons. The Inverse Problem Method. Moscow, Nauka 1980 [Russian]; English transi.: New York, Plenum 1984Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ludwig D. Faddeev
    • 1
  • Leon A. Takhtajan
    • 1
  1. 1.Steklov Mathematical InstituteLeningradUSSR

Personalised recommendations