Advertisement

Fundamental Continuous Models

  • Ludwig D. Faddeev
  • Leon A. Takhtajan
Part of the Springer Series in Soviet Mathematics book series (CLASSICS)

Abstract

We shall give a complete list of results pertaining to two fundamental continuous models, the HM and SG models. For the rapidly decreasing boundary conditions we shall analyze the mapping F from the initial data of the auxiliary linear problem to the transition coefficients and the discrete spectrum, and show how to solve the inverse problem, i. e. how to construct the mapping F−1. We shall see that these models allow an r-matrix approach, which will enable us to show that F is a canonical transformation to variables of action-angle type. It will thus be proved that the HM and SG models are completely integrable Hamiltonian systems. We shall also present a Hamiltonian interpretation of the change to light-cone coordinates in the SG model. To conclude this chapter, we shall explain that in some sense the LL model is the most universal integrable system with two-dimensional auxiliary space.

Keywords

Differential Equation Integral Equation Partial Differential Equation Initial Data Inverse Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A 1984]
    Arkadiev, V. A.: Application of the inverse scattering method to singular solutions of nonlinear equations. III. Teor. Mat. Fiz. 58,38–49 (1984) [Russian]Google Scholar
  2. [AKNS 1973]
    Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 30, 1262–1264 (1973)ADSMathSciNetCrossRefGoogle Scholar
  3. [AM 1983]
    Alonso Martinez, L.: Group-theoretical analysis of the Sine-Gordon equa- tion as a relativistic dynamical system. J. Math. Phys. 24, 982–989 (1983)ADSMathSciNetCrossRefGoogle Scholar
  4. [APP 1982, 1983] Arkadiev, V. A., Pogrebkov, A. K., Polivanov, M. K.: Application of the inverse scattering method to singular solutions of nonlinear equations. I. Teor. Mat. Fiz. 53, 163–180 (1982).
    II. Teor. Mat. Fiz. 54, 23–37 (1983)CrossRefGoogle Scholar
  5. [Russian]
    ; English transl. in Theor. Math. Phys. 53, 151–162 (1982), 54,12–32 (1983)Google Scholar
  6. [B 1983]
    Bobenko, A. I.: The Landau-Lifshitz equation. Dressing up of the solutions and elementary excitations. In: Differential geometry, Lie groups and mechanics. V. Zap. Nauchn. Semin. LOMI 123,58–66 (1983) [Russian]Google Scholar
  7. [BB 1983]
    B 1985] Bobenko, A. I.: Real algebraic-geometric solutions of the Landau-Lifshitz equation in terms of Prym theta-functions. Funk. Anal. Priloi. 19 (1), 6–19 (1985) [Russian]Google Scholar
  8. [BB 1983]
    Bikbaev, R. F., Bobenko, A. I.: On finite-gap integration of the Landau-Lifshitz equation. XYZ case. Preprint LOMI E-8–83. Leningrad, 1983Google Scholar
  9. [BBI 1983]
    Bikbaev, R. F., Bobenko, A. I., Its, A. R.: Finite-gap integration of the Landau-Lifshitz equation. Dokl. Akad. Nauk SSSR 272, 1293–1298 (1983)MathSciNetMATHGoogle Scholar
  10. [Russian]
    English transi. in Sov. Math. Dokl. 28, 512–516 (1983)Google Scholar
  11. [BBI 1984a,b]
    Bikbaev, R. F., Bobenko, A. I., Its, A. R.: The Landau-Lifshitz equation. The theory of exact solutions. (Part I, II). Preprints Don PTI-4–6(81), Don PTI-4–7(82), Donetsk 1984 [Russian]Google Scholar
  12. [BE 1982]
    Belokolos, E. D., Enolsky, V. Z.: Solution in elliptic functions of the nonlinear partial differential equations integrable by the inverse scattering method. Usp. Mat. Nauk 37 (4), 89 (1982) [Russian]Google Scholar
  13. [Bo 1983]
    Borisov, A. B.: Multisoliton solutions of the nonisotropic magnet equations. Fizika Materialov i Metallovedenie 55 (2), 230–234 (1983) [Russian]Google Scholar
  14. [BR 1981]
    Borovik, A. E., Robuk, V. N.: Linear pseudopotentials and conservation laws for the Landau-Lifshitz equation describing the nonlinear dynamics of a ferromagnet with uniaxial anisotropy. Teor. Mat. Fiz. 46, 371–381 (1981)CrossRefGoogle Scholar
  15. [Russian]
    Russian]; English transl. in Theor. Math. Phys. 46, 242–248 (1981)Google Scholar
  16. [Bu 1978]
    Budagov, A. S.: A completely integrable model of classical field theory with nontrivial particle interaction in two space-time dimensions. In: Problems in quantum field theory and statistical physics. I. Zap. Nauchn. Semin. LOMI 77, 24–56 (1978)[Russian]Google Scholar
  17. [C 1980]
    Cherednik, I. V.: Reality conditions in finite-gap integration. Dokl. Akad.Google Scholar
  18. [C 1983]
    Nauk SSR 252,1104–1108 (1980) [Russian]; English transl. in Soy. Phys. Dokl. 25,450–452 (1980)Google Scholar
  19. [C 1983]
    Cherednik, I. V.: Integrable differential equations and coverings of elliptic curves. Izv. Akad. Nauk SSSR, Ser. Mat. 47, 384–406 (1983)MathSciNetGoogle Scholar
  20. [Russian]
    Russian]; English transl. in Math. USSR - Izv. 22, 357–377 (1984)Google Scholar
  21. [D 1983]
    Dubrovin, B. A.: Matrix finite-gap operators. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 23,33–78 Moscow, VINITI 1983 [Russian]Google Scholar
  22. [DJK 1983]
    Date, E., Jimbo, M., Kashiwara, M.: Landau-Lifshitz equation: solitons, quasi-periodic solutions and infinite dimensional Lie algebras. J. Phys. A 16, 221–236 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [DN 1982]
    Dubrovin, B. A., Natanson, S. M.: Real two-gap solutions of the sineGordon equation. Funk. Anal. Priloz. 16 (1), 27–43 (1982)[Russian]; English transl. in Funct. Anal. Appl. 16, 21–33 (1982)Google Scholar
  24. [F 1980]
    Fogedby, H. C.: Solitons and magnons in the classical Heisenberg chain. J. Phys. A 13, 1467–1499 (1980)ADSMathSciNetCrossRefGoogle Scholar
  25. [GY 1984]
    Gerdjikov, V. S., Yanovski, A. B.: Gauge covariant formulation of the generating operator. 1. The Zakharov-Shabat system. Phys. Lett. 103A, 232236 (1984)Google Scholar
  26. [I 1976]
    Its, A. R.: Finite-gap solutions of the sine-Gordon equation. For an exposition see Matveev V. B.: Abelian functions and solutions. Preprint No 373, Inst. Fiz. Teor. Univ. Wroclaw (1976)Google Scholar
  27. [IP 1982]
    Its, A. R., Petrov, V. E.: “Isomonodromic” solutions of the sine-Gordon equation and the long time asymptotics of its rapidly decaying solutions. Dokl. Akad. Nauk SSSR 265, 1302–1306 (1982)MathSciNetMATHGoogle Scholar
  28. Russian]; English transl. in Soy. Math. Dokl. 26, 244–247 (1983)Google Scholar
  29. [K 1977]
    Krichever, I. M.: Methods of algebraic geometry in the theory of nonlinear equations. Usp. Mat. Nauk 32 (6), 183–208 (1977)MathSciNetMATHGoogle Scholar
  30. [Russian]
    Russian]; English transi. in Russian Math. Surveys 32 (6), 185–213 (1977)Google Scholar
  31. [K 1983]
    Krichever, I. M.: Nonlinear equations and elliptic curves. Itogi Nauki Tekh., Ser. Sovrem. Probl. Math. 23,79–136 Moscow, VINITI 1983 [Russian]Google Scholar
  32. [K 1984]
    Kaup, D.: The squared eigenstates of the sine-Gordon eigenvalue problem. J. Math. Phys. 25, 2467–2471 (1984)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [KK 1976]
    Kosel, V. A., Kotlyarov, V. P.: Almost-periodic solutions of the equations u„-u„„+ sin u=0. Dokl. Akad. Nauk. Ukr. SSR, Ser. A. 10,878–881 (1976) [Russian]Google Scholar
  34. [KN 1978]
    Kaup, D. J., Newell, A. C.: The Goursat and Cauchy problems for the Sine-Gordon equation. SIAM J. Appl. Math. 34, 37–54 (1978)MathSciNetMATHGoogle Scholar
  35. [KR 1978]
    Kulish, P. P., Reyman, A. G.: A hierarchy of symplectic forms for the Schrödinger and the Dirac equations on the line. In: Problems in quantum field theory and statistical physics. I. Zapiski Nauchn. Semin. LOMI 77, 134–147 (1978)Google Scholar
  36. [Russian]
    Russian]; English transl. in J. Sov. Math. 22, 1627–1637 (1983)Google Scholar
  37. [KS 1980]
    Kulish, P. P., Sklyanin, E. K.: Solutions of the Yang-Baxter equation. In: Differential geometry, Lie groups and mechanics. III. Zapiski Nauchn. Semin. LOMI 95, 129–160 (1980)Google Scholar
  38. Russian]; English transl. in J. Soy. Math. 19 (5) 1596–1620 (1982)Google Scholar
  39. [Ku 1976]
    Kulish, P. P.: Factorization of the classical and quantum S-matrix and conservation laws. Teor. Mat. Fiz. 26, 198–205 (1976)MathSciNetCrossRefGoogle Scholar
  40. Russian]; English transi. in Theor. Math. Phys. 26, 132–137 (1976)Google Scholar
  41. [Ku 1979]
    Kulish, P. P.: Scattering of solitons with internal degrees of freedom. In: Problems in high energy physics and quantum field theory. II International seminar, Protvino, 463–470 (1979)Google Scholar
  42. [Ku 1981]
    Kulish, P. P.: Quantum difference nonlinear Schrödinger equation. Lett. Math. Phys. 5, 191–197 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [Ku 1982]
    Kulish, P. P.: Action-angle variables for the multi-component nonlinear Schrödinger equation. In: Boundary value problems of mathematical physics and related topics of function theory. 14. Zap. Nauchn. Semin. LOMI 115,126–136 (1982) [Russian]Google Scholar
  44. [M 1973]
    Manakov, S. V.: On the theory of two-dimensional stationary self-focusing of electro-magnetic waves. Zh. Exp. Teor. Fiz. 65, 506–516 (1973)ADSGoogle Scholar
  45. Russian]; English transl. in Sov. Phys. JETP 38, 248–253 (1974)Google Scholar
  46. [M 1976]
    Manakov, S. V.: Example of a completely integrable nonlinear wave field with nontrivial dynamics (Lee model).Teor. Mat. Fiz. 28, 172–179 (1976)Google Scholar
  47. Russian]; English transi. in Theor. Math. Phys. 28, 709–714 (1976)Google Scholar
  48. [M 1978]
    Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978)ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [Mi 1982]
    Mikhailov, A. V.: The Landau-Lifshitz equation and the Riemann boundary problem on a torus. Phys. Lett. 92A, 51–55 (1982)MathSciNetCrossRefGoogle Scholar
  50. [N 1984]
    Novikov, S. P.: Algebraic-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the sine-Gordon equation. In: Differential geometry, Lie groups and mechanics. VI. Zapiski Nauchn. Semin. LOMI 133,177–196 (1984) [Russian]Google Scholar
  51. [No 1984]
    Novokshenov, V. Yu.: Asymptotics as co of the solution of the Cauchy problem for the two-dimensional generalization of the Toda lattice. Izv. Akad. Nauk SSSR, Ser. Mat. 48,372–410 (1984) [Russian]Google Scholar
  52. [PP 1985]
    Pogrebkov, A. K., Polivanov, M, K.: Singular solutions of the Liouville and Sinh-Gordon equations. Sov. Sci. Rev., Ser. C. Review in Math. Physics 5, 120–169 (1985)Google Scholar
  53. [R 1984]
    Rodin, Yu. L.: The Riemann boundary problem on Riemann surfaces and the inverse scattering problem for the Landau-Lifshitz equation. Physica D11, 90–108 (1984)MathSciNetMATHGoogle Scholar
  54. [S 1979]
    Sklyanin, E. K.: On complete integrability of the Landau-Lifshitz equation. Preprint LOMI E-3–79, Leningrad, 1979Google Scholar
  55. [T 1974]
    Takhtajan, L. A.: Exact theory of propagation of ultra-short optical pulses in two-level media. Zh. Exp. Teor. Fiz. 66,476–489 (1974) [Russian]Google Scholar
  56. [T 1977]
    Takhtajan, L. A.: Integration of the continuous Heisenberg spin chain through the inverse scattering method. Phys. Lett. 64A, 235–237 (1977)MathSciNetCrossRefGoogle Scholar
  57. [TF 1974]
    Takhtajan, L. A., Faddeev, L. D.: Essentially nonlinear one-dimensional model of classical field theory. Teor. Mat. Fiz. 21 (2), 160–174 (1974) Russian]; English transi. in Theor. Math. Phys. 21, 1046–1057 (1974)Google Scholar
  58. [TF 1975]
    Takhtajan, L. A., Faddeev, L. D.: Essentially nonlinear one-dimensional model of classical field theory. (Addition). Teor. Mat. Fiz. 22, 143 (1975) Russian]; English transi. in Theor. Math. Phys. 22, 100 (1975)Google Scholar
  59. [TF 1976]
    Takhtajan, L. A., Faddeev, L. D.: The Hamiltonian system connected with the equation u g „+ sin u=0. Trudy. Mat. Inst. Steklov 142, 254–266 (1976)MathSciNetGoogle Scholar
  60. Russian]; English transi. in Proc. Steklov Inst. Math. 3, 277–289 (1979)Google Scholar
  61. [Ts 1981]
    Tsiplyaev, S. A.: Commutation relations of the transition matrix in the classical and quantum inverse scattering methods. (The local case).Teor. Mat. Fiz. 48, 24–33 (1981)Google Scholar
  62. Russian]; English transi. in Theor. Math. Phys. 48, 580–586 (1982)Google Scholar
  63. [V 1983]
    Veselov, A. P.: The Landau-Lifshitz equation and integrable systems of classical mechanics. Dokl. Akad. Nauk SSSR 270, 1094–1097 ( 1983MathSciNetGoogle Scholar
  64. Russian]; English transi. in Sov. Phys. Dokl. 28, 458–459 (1983)Google Scholar
  65. [W 1985]
    Vladimirov, V. S., Volovich, I. V.: Local and nonlocal currents for nonlinear equations. Teor. Mat. Fiz. 62,3–29 (1985) [Russian]Google Scholar
  66. [WW 1927]
    Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis. Cambridge, University Press 1927MATHGoogle Scholar
  67. [ZF 1971]
    Zakharov, V. E., Faddeev, L. D.: Korteweg-de Vries equation, a completely integrable Hamiltonian system. Funk. Anal. Priloi. 5 (4), 18–27 (1971)MATHGoogle Scholar
  68. [Russian]
    Russian]; English transi. in Funct. Anal. Appl. 5, 280–287 (1971)Google Scholar
  69. [ZM 1975]
    Zakharov, V. E., Manakov, S. V.: The theory of resonant interaction of wave packets in nonlinear media. Zh. Eksp. Teor. Fiz. 69, 1654–1673 (1975)Google Scholar
  70. Russian]; English transl. in Soviet Phys. JETP 42, 842–850 (1976)Google Scholar
  71. [ZT 1979]
    Zakharov, V. E., Takhtajan, L. A.: Equivalence of the nonlinear Schrödinger equation and the Heisenberg ferromagnet equation. Teoret. Mat. Fiz. 38 (1), 26–35 (1979)Google Scholar
  72. [ZTF 1974]
    Russian]; English trans!. in Theor. Math. Phys. 38, 17–23 (1979)Google Scholar
  73. [ZTF 1974]
    Zakharov, V. E., Takhtajan, L. A., Faddeev, L. D.: A complete description of the solution of the sine-Gordon equation. Dokl. Akad. Nauk SSSR 219, 1334–1337 (1974)MathSciNetGoogle Scholar
  74. [Russian]
    Zakharov, V. E., Takhtajan, L. A., Faddeev, L. D.: English transi. in Sov. Phys. Dokl. 19, 824–826 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ludwig D. Faddeev
    • 1
  • Leon A. Takhtajan
    • 1
  1. 1.Steklov Mathematical InstituteLeningradUSSR

Personalised recommendations