Advertisement

The Riemann Problem

  • Ludwig D. Faddeev
  • Leon A. Takhtajan
Part of the Springer Series in Soviet Mathematics book series (CLASSICS)

Abstract

In Chapter I we analyzed the mapping
from the functions Ψ(x), to the transition coefficients and discrete spectrum of the auxiliary linear problem. We saw that for both rapidly decreasing and finite density boundary conditions this “change of variables” makes the dynamics quite simple because the time evolution of the transition coefficients for the continuous and discrete spectra becomes linear.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A 1981]
    Ablowitz, M. J.: Remarks on nonlinear evolution equations and ordinary differential equations of Painlevé type. Physica D, 3D, 129–141 (1981)ADSCrossRefMATHGoogle Scholar
  2. [AK 1981]
    Asano, N., Kato, Y.: Non-self-adjoint Zakharov-Shabat operator with a potential of the finite asymptotic values. I. Direct spectral and scattering problems. J. Math. Phys. 22, 2780–2793 (1981)MATHGoogle Scholar
  3. [AK 1984]
    Asano, N., Kato, Y.: Non-self-adjoint Zakharov-Shabat operator with a potential of the finite asymptotic values. II. Inverse Problem. J. Math. Phys. 25, 570–588 (1984)ADSMathSciNetCrossRefGoogle Scholar
  4. [AKNS 1974]
    Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: The inverse scattering transform–Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)Google Scholar
  5. [ARS 1980 a]
    Ablowitz, M. J., Ramani, A., Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations of P-type. I. J. Math. Phys. 21, 715–721 (1980)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [ARS 1980 b]
    Ablowitz, M. J., Ramani, A., Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations of P-type. II. J. Math. Phys. 21, 1006–1015 (1980)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [DT 1979]
    Deift, P., Trubowitz, E.: Inverse scattering on the line. Comm. Pure Appl. Math. 32, 121–251 (1979)MATHGoogle Scholar
  8. [F 1958]
    Faddeev, L. D.: On the relation between S-matrix and potential for the one-dimensional Schrödinger operator. Dokl. Akad. Nauk SSSR 121,6366 (1958) [Russian]Google Scholar
  9. [F 1959]
    Faddeev, L. D.: The inverse problem of the quantum theory of scattering. Uspekhi Mat. Nauk 14 (4), 57-119 (1959) Russian]; English transi. in J. Math. Phys. 4, 72–104 (1962)Google Scholar
  10. [F 1964]
    Faddeev, L. D.: Properties of the S-matrix of the one-dimensional Schrö-dinger equation. Trudy Mat. Inst. Steklov 73, 314-336 (1964) Russian]; English transi. in Transi. Amer. Math. Soc. Ser. 2, 65, 139–166 (1967)Google Scholar
  11. [F 1974]
    Faddeev, L. D.: The inverse problem of quantion scattering theory. II. Sovrem. Probl. Mat. 3. VINITI, Moscow, 93-181 (1974) Russian]; English transi. in Soviet J. Math. 5 (1976)Google Scholar
  12. [FA 1981]
    Fokas, A. S., Ablowitz, M. J.: Linearization of the Korteweg-de Vries and Painlevé II equations. Phys. Rev. Lett. 47, 1096–1100 (1981)ADSMathSciNetCrossRefGoogle Scholar
  13. [FN 1980]
    Flaschka, H., Newell, A. C.: Monodromy and spectrum preserving defor-mations. Comm. Math. Phys. 76, 65–116 (1980)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [Fr 1972]
    Frolov, I. S.: Inverse scattering problem for the Dirac system on the whole line. Dokl. Akad. Nauk SSSR 207, 44-47 (1972) Russian]; English transi. in Sov. Math. Dokl. 13, 1468–1472 (1972)Google Scholar
  15. [FS 1977]
    Faddeev, D. K., Sominski, I. S.: Problems in Higher Algebra. Moscow, Nauka 1977 [Russian]Google Scholar
  16. [GK 1958]
    Gohberg, I. C., Krein, M. G.: Systems of integral equations on the half-line with kernels depending on the difference of the arguments. Uspekhi Mat. Nauk 13 (2), 3–72 (1958) [Russian]Google Scholar
  17. [GK 1978]
    Gerdjikov, V. C., Kulish, P. P.: Completely integrable Hamiltonian system associated with the non-self-adjoint Dirac operator. Bulg. J. Phys. 5,337348 (1978) [Russian]Google Scholar
  18. [GL 1951]
    Gelfand, I. M., Levitan, B. M.: On the determination of a differential equation from its spectral function. Izv. Akad. Nauk SSR, Ser. Math. 15, 309-360 (1951) Russian]; English transi. in Amer. Math. Soc. transi. Ser. 2, 1, 253–304 (1955)Google Scholar
  19. [GL 1966]
    Gasymov, M. G., Levitan, B. M.: The inverse problem for a Dirac system. Dokl. Akad. Nauk SSSR 167, 967-970 (1966) Russian]; English transi. in Soviet Phys. Doklady 7, 495–499 (1966)Google Scholar
  20. [I 1981]
    Its, A. R.: Asymptotics of solutions of the nonlinear Schrödinger equation and isomonodromic deformations of systems of linear differential equations. Dokl. Akad. Nauk SSSR 261, 14-18 (1981) Russian]; English trans]. in Soviet Math. Dokl. 24, 452–456 (1981)Google Scholar
  21. [I 1984]
    Its, A. R.: The Liouville theorem and the inverse scattering method. In: Differential geometry. Lie groups and mechanics. VI. Zapiski Nauchn. Semin. LOMI 133,113–125 (1984) [Russian]Google Scholar
  22. [I 1985]
    Its, A. R.: Isomonodromic solutions of the zero-curvature equation. Izv. Akad. Nauk SSSR Ser. Mat. 49,530–565 (1985) [Russian]Google Scholar
  23. [JM 1981 a]
    Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordi-nary differential equations with rational coefficients. II. Physica D, 2D, 407–448 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [JM 1981 b]
    Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordi-nary differential equations with rational coefficients. III. Physica D, 4D, 26–46 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [JMU 1981]
    Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and r-function. Physica D, 2D, 306–352 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [K 1954]
    Krein, M. G.: On integral equations generating differential equations of second order. Dokl. Akad. Nauk SSSR 97,21–24 (1954) [Russian]Google Scholar
  27. [K 1955]
    Krein, M. G.: On determination of the potential of a particle from its S matrix. Dokl. Akad. Nauk SSSR 105, 433–436 (1955) [Russian]Google Scholar
  28. [K 1977]
    Krichever, I. M.: Methods of algebraic geometry in the theory of nonlinear equations. Uspekhi Mat. Nauk 32 (6), 183-208 (1977) Russian]; English trans. in Russian Math. Surveys 32 (6), 185–213 (1977)Google Scholar
  29. [KM 1955]
    Kay, I., Moses, H. E.: The determination of the scattering potential from the spectral measure function. I. Continuous spectrum. Nuovo Cimento 2, 916–961 (1955)MathSciNetCrossRefMATHGoogle Scholar
  30. [KM 1956]
    Kay, I., Moses, H. E.: The determination of the scattering potential from the spectral measure function. II. Point eigenvalues and proper eigenfunctions. Nuovo Cimento 3, 66–84 (1956)MathSciNetCrossRefGoogle Scholar
  31. [KM 1956a]
    Kay, I., Moses, H. E.: The determination of the scattering potential from the spectral measure function. III. Calculation of the scattering potential from the scattering operator for the one dimensional Schrödinger equation. Nuovo Cimento 3, 276–304 (1956)CrossRefGoogle Scholar
  32. [L 1979]
    Levitan, B. M.: Sufficient conditions for the solvability of the inverse prob-lem of scattering theory on the whole line. Mat. Sb. 108,350–357 (1979) [Russian]Google Scholar
  33. [M 1955]
    Marchenko, V. A.: On reconstruction of the potential energy from phases of the scattered waves. Dokl. Akad. Nauk SSSR 104,695–698 (1955) [Russian]Google Scholar
  34. [M 1977]
    Marchenko, V. A.: Sturm-Liouville Operators and their Applications. Kiev, Naukova Dumka 1977 [Russian]Google Scholar
  35. [M 1981]
    Mikhailov, A. V.: The reduction problem and the inverse scattering meth-od. Physica D, 3D, 73–117 (1981)ADSCrossRefGoogle Scholar
  36. [M 1985]
    Marchenko, V. A.: Nonlinear Equations and Operator Algebras. Kiev, Naukova Dumka 1985 [Russian]Google Scholar
  37. [Mu 1968]
    Muskhelishvili, N. I.: Singular Integral Equations. Boundary-value Prob-lems of Function Theory and their Applications in Mathematical Physics. Moscow, Nauka 1968 [Russian]; English transl. of an earlier Russian edition: Groningen-Holland, P. Noordhoff N.V. 1953Google Scholar
  38. [N 1980]
    Novoksenov, V. Ju.: Asymptotic behaviour as t-. 00 of the solution of the Cauchy problem for the nonlinear Schrödinger equation. Dokl. Akad. Nauk SSSR 251,799–802 (1980) [Russian]Google Scholar
  39. [P 1955]
    Potapov, B. P.: Multiplicative structure of J-contractive matrix functions. Trudy Moskov. Mat. Obsc. 4,125–236 (1955) [Russian]Google Scholar
  40. [QC 1983]
    Quispel, G. R. W., Capel, H. W.: The anisotropic Heisenberg spin chain and the nonlinear Schrödinger equation. Physica A, 117A, 76–102 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [S 1975]
    Shabat, A. B.: The inverse scattering problem for a system of differential equations. Funk. Anal. Priloz. 9 (3), 75–78 (1975) [Russian]Google Scholar
  42. [S 1979]
    Shabat, A. B.: An inverse scattering problem. Differencialnye Uravneniya 15, 1824–1834 (1979) Russian]; English transl. in Diff. Equations 15, 1299–1307 (1980)Google Scholar
  43. [T 1973]
    Takhtajan, L. A.: Hamiltonian equations connected with the Dirac equa-tion. In: Differential geometry, Lie groups and mechanics. I. Zapiski Nauchn. Semin. LOMI 37, 66–76 (1973) [Russian]; English transi. in J. Sov. Math. 8, 219–228 (1977)Google Scholar
  44. [U 1980a]
    Ueno, K.: Monodromy preserving deformation and its application to soli-ton theory. I. Proc. Japan Acad., ser. A, 56 (3), 103–108 (1980)MathSciNetCrossRefMATHGoogle Scholar
  45. [U 1980b]
    Ueno, K.: Monodromy preserving deformation and its application to soli ton theory. II. Proc. Japan Acad., ser. A, 56 (5), 210–215 (1980)MathSciNetCrossRefMATHGoogle Scholar
  46. [V 1970]
    Vekua, N. P.: Systems of Singular Integral Equations and Boundary-value problems. Moscow, Nauka 1970 [Russian]Google Scholar
  47. [ZM 1975]
    Zakharov, V. E., Manakov, S. V.: The theory of resonant interaction of wave packets in nonlinear media. Zh. Eksp. Teor. Fiz. 69, 1654–1673 (1975) Russian]; English trans!. in Soviet Phys. JETP 42, 842–850 (1976)Google Scholar
  48. [ZM 1976]
    Zakharov, V. E., Manakov, S. V.: Asymptotic behaviour of nonlinear wave systems integrable by the inverse scattering method. Zh. Eksp. Teor. Fiz. 71, 203–215 (1976) Russian]; English transi. in Soviet Phys. JETP 44,106–1 12 (1976)Google Scholar
  49. [ZMNP 1980]
    Zakharov, V. E., Manakov, S. V., Novikov, S. P., Pitaievski, L. P.: Theory of Solitons. The Inverse Problem Method. Moscow, Nauka 1980 [Russian]; English transi.: New York, Plenum 1984Google Scholar
  50. [ZS 1971]
    Zakharov, V. E., Shabat, A. B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media. Zh. Exp. Teor. Fiz. 61, 118-134 (1971) Russian]; English transl. in Soviet Phys. JETP 34, 62–69 (1972)Google Scholar
  51. [ZS 1973]
    Zakharov, V. E., Shabat, A. B.: Interaction between solitons in a stable medium. Zh. Exp. Teor. Fiz. 64, 1627-1639 (1973) Russian]; English trans!. in Sov. Phys. JETP 37, 823–828 (1973)Google Scholar
  52. [ZS 1979]
    Zakharov, V. E., Shabat, A. B.: Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. II. Funk. Anal. Priloz. 13 (3), 13-22 (1979) Russian]; English transl. in Funct. Anal. Appl. 13, 166–174 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ludwig D. Faddeev
    • 1
  • Leon A. Takhtajan
    • 1
  1. 1.Steklov Mathematical InstituteLeningradUSSR

Personalised recommendations