Advertisement

Zero Curvature Representation

  • Ludwig D. Faddeev
  • Leon A. Takhtajan
Part of the Springer Series in Soviet Mathematics book series (CLASSICS)

Abstract

The dynamical system to be considered is generated by the nonlinear equation
(1.1)
with the initial condition
(1.2)
.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AK 1981]
    Asano, N., Kato, Y.: Non-self-adjoint Zakharov-Shabat operator with a potential of the finite asymptotic values. I. Direct spectral and scattering problems. J. Math. Phys. 22, 2780–2793 (1981)MATHGoogle Scholar
  2. [AKNS 1974]
    Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)MathSciNetCrossRefMATHGoogle Scholar
  3. [GK 1978]
    Frolov, I. S.: Inverse scattering problem for the Dirac system on the whole line. Dokl. Akad. Nauk SSSR 207, 44–47 (1972) English transi. in Soy. Math. Dokl. 13, 1468–1472 (1972)Google Scholar
  4. [GK 1978]
    Gerdjikov, V. C., Kulish, P. P.: Completely integrable Hamiltonian system associated with the non-self-adjoint Dirac operator. Bulg. J. Phys. 5, 337–348 (1978) [Russian]Google Scholar
  5. [K 1956]
    Krein, M. G.: On the theory of accelerants and S-matrices of canonical differential systems. Dokl. Akad. Nauk SSSR 111,1167–1170 (1956) [Russian]Google Scholar
  6. [L 1956]
    Levin, B. Ja.: Transformations of Fourier and Laplace types by means of solutions of a second order differential equation. Dokl. Akad. Nauk SSSR 106,187–190 (1956) [Russian]Google Scholar
  7. [M 1977]
    Marchenko, V. A.: Sturm-Liouville Operators and their Applications. Kiev, Naukova Dumka 1977 [Russian]Google Scholar
  8. [N 1974]
    Novikov, S. P.: The periodic problem for the Korteweg-de Vries equation. Funk. Anal. Priloz. 8 (3) 54–66 (1974)MathSciNetMATHGoogle Scholar
  9. Novikov, S. P.: English transi. in Funct. Anal. Appl. 8, 236–246 (1974)Google Scholar
  10. [ZM 1978]
    Zakharov, V. E., Mikhailov, A. V.: Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method. Zh. Exp. Teor. Fiz. 74, 1953–1973 (1978)MathSciNetGoogle Scholar
  11. Zakharov, V. E., Mikhailov, A. V.: English transi. in Soy. Phys. JETP 47, 1017–1027 (1978)Google Scholar
  12. [ZS 1971]
    Zakharov, V. E., Shabat, A. B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media. Zh. Exp. Teor. Fiz. 61, 118–134 (1971)Google Scholar
  13. Zakharov, V. E., Shabat, A. B.: English transi. in Soviet Phys. JETP 34, 62–69 (1972)Google Scholar
  14. [ZS 1973]
    Zakharov, V. E., Shabat, A. B.: Interaction between solitons in a stable medium. Zh. Exp. Teor. Fiz. 64, 1627–1639 (1973)Google Scholar
  15. Zakharov, V. E., Shabat, A. B.: English transi. in Soy. Phys. JETP 37, 823–828 (1973)Google Scholar
  16. [ZS 1979]
    Zakharov, V. E., Shabat, A. B.: Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. II. Funk. Anal. Priloz. 13 (3), 13–22 (1979)MathSciNetGoogle Scholar
  17. Zakharov, V. E., Shabat, A. B.: English transi. in Funct. Anal. Appl. 13, 166–174 (1979)Google Scholar
  18. [ZT 1979]
    Zakharov, V. E., Takhtajan, L. A.: Equivalence of the nonlinear Schrödinger equation and the Heisenberg ferromagnet equation. Teoret. Mat. Fiz. 38 (1), 26–35 (1979)MathSciNetGoogle Scholar
  19. Zakharov, V. E., Takhtajan, L. A.: English transi. in Theor. Math. Phys. 38, 17–23 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ludwig D. Faddeev
    • 1
  • Leon A. Takhtajan
    • 1
  1. 1.Steklov Mathematical InstituteLeningradUSSR

Personalised recommendations