Advertisement

Introduction

  • Ludwig D. Faddeev
  • Leon A. Takhtajan
Part of the Springer Series in Soviet Mathematics book series (CLASSICS)

Abstract

Over the past fifteen years the theory of solitons and the related theory of integrable nonlinear evolution equations in two space-time dimensions has attracted a large number of research workers of different orientations ranging from algebraic geometry to applied hydrodynamics. Modern mathematical physics has witnessed the development of a vast new area of research devoted to this theory and called the inverse scattering method of solving nonlinear equations (other names are: the inverse spectral transform, the method of isospectral deformations and, more colloquially, the L-A pair method).

Keywords

Differential Equation Integral Equation Partial Differential Equation Mathematical Physic Research Worker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AS 1981]
    Ablowitz, M. J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia 1981Google Scholar
  2. [BC 1980]
    Bullough, R. K., Caudrey, P. J. (ed.): Solitons, Topics in Current Physics 17, Berlin-Heidelberg-New York, Springer 1980Google Scholar
  3. [C 1978]
    Calogero, F. (ed.): Nonlinear Evolution Equations Solvable by the Spectral Transform. Research Notes in Math. 26, London, Pitman 1978Google Scholar
  4. [CD 1982]
    Calogero, F., Degasperis, A.: Spectral Transform and Solitons. Vol. 1. Amsterdam, North-Holland 1982MATHGoogle Scholar
  5. [DEGM 1982]
    Dodd, R. K., Eilbeck, J. C., Gibbon, J. D., Morris, H. C.: Solitons and Nonlinear Waves. New York, Academic Press 1982MATHGoogle Scholar
  6. [E 1981]
    Eilenberger, G.: Solitons. Mathematical Method for Physicists. Berlin, Springer 1981MATHGoogle Scholar
  7. [F 1980a]
    Faddeev, L. D.: A Hamiltonian interpretation of the inverse scattering method. In: Solitons, edited by Bullough R. K., Caudrey P. J., Topics in Current Physics 17, 339–354, Berlin-Heidelberg-New York, Springer 1980Google Scholar
  8. [F 1980b]
    Faddeev, L. D.: Quantum completely integrable models in field theory. In: Mathematical Physics Review. Sect. C.: Math. Phys. Rev. 1, 107–155, Harwood Academic 1980Google Scholar
  9. [F 1981]
    Faddeev, L. D.: Two-dimensional integrable models in quantum field theory. Physica Scripta 24, 832–835 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [F 1982a]
    Faddeev, L. D.: Recent development of QST. In: Recent development in gauge theory and integrable systems. Kyoto, Kyoto Univ. Research Inst. for Math. Sci., 53–71, 1982Google Scholar
  11. [F 1982b]
    Faddeev, L. D.: Integrable models in 1+ 1-dimensional quantum field theory. In: Les Houches, Session XXXIX, 1982, Recent Advances in Field Theory and Statistical Mechanics, Zuber, J.-B., Stora, R. (editors), 563608. Elsevier Science Publishers 1984Google Scholar
  12. [F 1983]
    Faddeev, L. D.: Quantum scattering transformation. In: Structural Elements in Particle Physics and Statistical Mechanics. (Freiburg Summer Inst. on Theor. Physics 1981) vol. 82, 93–114, New York-London, Plenum Press 1983CrossRefGoogle Scholar
  13. [FK 1978]
    Faddeev, L. D., Korepin, V. E.: Quantum Theory of Solitons. Physics Reports 42C (1), 1–87 (1978)ADSMathSciNetCrossRefGoogle Scholar
  14. [GGKM 1967]
    Gardner, C. S., Greene, J. M., Kruskal, M. D., Miura, R. M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)ADSCrossRefMATHGoogle Scholar
  15. [IK 1982]
    Izergin, A. G., Korepin, V. E.: The quantum inverse scattering method. Physics of elementary particles and atomic nuclei, v. 13, N 3, 501–541 (1982)MathSciNetMATHGoogle Scholar
  16. Izergin, A. G., Korepin, V. E.: English trans!. in Soviet J. Particles and Nuclei 13 (3), 207–223 (1982)Google Scholar
  17. KF 1977] Korepin, V. E., Faddeev, L. D.: Quantization of solitons. In: Physics of elementary particles (Proceedings of the XII winter school of the Leningrad institute of nuclear physics), 130–146, Leningrad 1977 [Russian]Google Scholar
  18. [KS 1980]
    Kulish, P. P., Sklyanin, E. K.: Solutions of the Yang-Baxter equation. In: Differential geometry, Lie groups and mechanics. III. Zapiski Nauchn. Semin. LOMI 95, 129–160 (1980) [Russian]; English transi. in J. Soy. Math. 19 (5), 1596–1620 (1982)Google Scholar
  19. [KS 1982]
    Kulish, P. P., Sklyanin, E. K.: Quantum spectral transform method. Recent Developments. Lecture Notes in Physics, vol. 151, 61–119, Berlin-Heidelberg-New York, Springer 1982Google Scholar
  20. [L 1968]
    Lax, P. D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467–490 (1968)MATHGoogle Scholar
  21. [L 1980]
    Lamb, G. L., Jr.: Elements of Soliton Theory. New York, Wiley 1980MATHGoogle Scholar
  22. [LS 1978]
    Lonngren, K., Scott, A. (eds.): Solitons in Action. New York, Academic Press 1978MATHGoogle Scholar
  23. [M 1976]
    Miura, R. (ed.): Bäcklund transformations. Lecture Notes in Mathematics, vol. 515, Berlin-Heidelberg-New York, Springer 1976Google Scholar
  24. [MZ 1981]
    Manakov, S. L., Zakharov, V. E. (eds.): Soliton Theory. Proceedings of the Soviet-American Symposium on Soliton Theory. Physica D, 3 D, no. 1+ 2 (1981)Google Scholar
  25. [T 1983]
    Takhtajan, L. A.: Integrable models in classical and quantum field theory. In: Proceedings of the International Congress of Mathematicians 1983, 1331–1340, Warszawa, North-Holland 1984Google Scholar
  26. [TF 1979]
    Takhtajan, L. A., Faddeev, L. D.: The quantum inverse problem method and the XYZ Heisenberg model. Uspekhi Mat. Nauk 34 (5), 13–63 (1979)MathSciNetGoogle Scholar
  27. Takhtajan, L. A., Faddeev, L. D.: English trans!. in Russian Math. Surveys 34 (5), 2–68 (1979)Google Scholar
  28. [ZF 1971]
    Zakharov, V. E., Faddeev, L. D.: Korteweg-de Vries equation, a completely integrable Hamiltonian system. Funk. Anal. Priloz. 5 (4) 18–27 (1971) [Russian]: English transi. in Funct. Anal. Appl. 5, 280–287 (1971)Google Scholar
  29. [ZMNP 1980]
    Zakharov, V. E., Manakov, S. V., Novikov, S. P., Pitaievski, L. P.: Theory of Solitons. The Inverse Problem Method. Moscow, Nauka 1980Google Scholar
  30. Zakharov, V. E., Manakov, S. V., Novikov, S. P., Pitaievski, L. P.: English transi.: New York, Plenum 1984Google Scholar
  31. [ZS 1971]
    Zakharov, V. E., Shabat, A. B.: Exact theory of two-dimensional selffocusing and one-dimensional self-modulation of waves in non-linear media. Zh. Exp. Teor. Fiz. 61, 118–134 (1971)Google Scholar
  32. Zakharov, V. E., Shabat, A. B.: English transi. in Soviet Phys. JETP 34, 62–69 (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ludwig D. Faddeev
    • 1
  • Leon A. Takhtajan
    • 1
  1. 1.Steklov Mathematical InstituteLeningradUSSR

Personalised recommendations