Skip to main content

Abstract

Large scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against malaria and avian influenza requiring about 100 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large scale grids for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large scale deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BCG Estimate: A Revolution in R&D, The Impact of Genomics (2001)

    Google Scholar 

  2. Lyne, P.D.: Structure-based virtual screening: An overview. Drug Discov. Today 7, 1047–1055 (2002)

    Article  Google Scholar 

  3. Congreve, M. et al.: Structural biology and drug discovery. Drug Discov Today 10, 895–907 (2005)

    Article  Google Scholar 

  4. Nwaka, S., Ridley, R.G.: Virtual drug discovery and development for neglected diseases through public-private partnerships. Nat. Rev. Drug Discov 2, 919–928 (2003)

    Article  Google Scholar 

  5. Chien, A. et al.: Grid technologies empowering drug discovery. Drug Discovery Today 7, 176–180 (2002)

    Article  Google Scholar 

  6. Gagliardi, F. et al.: Building an infrastructure for scientific Grid computing: status and goals of the EGEE project. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 363, 1729–1742 and http://www.eu-egee.org/ (2005)

    Google Scholar 

  7. Ghosh, S.: Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol. 10, 194–202 (2006)

    Article  Google Scholar 

  8. Coombs, G.H. et al.: Aspartic proteases of plasmodium falciparum and other protozoa as drug targets. Trends parasitol. 17, 532–537 (2001)

    Article  Google Scholar 

  9. Weisner, J. et al.: Angew. New. Antimalarial drugs, Chem. Int. 42, 5274–5529 (2003)

    Article  Google Scholar 

  10. Curtis, C.F., Hoffman, S.L.: Science 290, pp. 1508–1509 (2000)

    Google Scholar 

  11. Spencer, R.W.: Highthroughput virtual screening of historic collections on the file size, biological targets, and file diversity. Biotechnol. Bioeng 61, 61–67 (1998)

    Article  Google Scholar 

  12. Jacq, N.: Grid as a bioinformatics tool. Parallel Computing 30, 1093–1107 (2004)

    Article  Google Scholar 

  13. Campana, S. et al.: Analysis of the ATLAS Rome Production Experience on the LHC Computing Grid. IEEE International Conference on e-Science and Grid Computing (2005)

    Google Scholar 

  14. Bird, I. et al.: Operating the LCG and EGEE production Grids for HEP. Proceedings of the CHEP’04 Conference (2004)

    Google Scholar 

  15. Breton, V. et al.: Grid added value to address malaria. In: Proceedings of the 6-th IEEE International Symposium on Cluster Computing and the Grid 40, http://wisdom. healthgrid.org/ (2006)

    Google Scholar 

  16. Altschul, S.F. et al.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Google Scholar 

  17. Ziegler, R.: Pharma GRIDs: Key to Pharmaceutical Innovation? In: Proceedings of the HealthGrid conference 2004 (2004)

    Google Scholar 

  18. Jacq, N. et al.: Demonstration of In Silico Docking at a Large Scale on Grid Infrastructure. Studies in Health Technology and Informatics 120, 155–157 (2006)

    Google Scholar 

  19. Francis, S.E. et al.: Hemoglobin metabolism in the malaria parasite plasmodium falciparum. Annu.Rev. Microbiol. 51, 97–123 (1997)

    Article  Google Scholar 

  20. Lee, H.-C. et al.: Grid-enabled High-throughput in silico Screening against influenza A Neuraminidase. To be published in IEEE Transaction on Nanobioscience (2006)

    Google Scholar 

  21. Moscicki, J.T.: DIANE - Distributed Analysis Environment for GRID-enabled Simulation and Analysis of Physics Data. NSS IEEE 2004 (2004)

    Google Scholar 

  22. Moscicki, J.T. et al.: Biomedical Applications on the GRID: Efficient Management of Parallel Jobs. NSS IEEE 2003 (2003)

    Google Scholar 

  23. Li, K.S. et al.: Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213 (2004)

    Article  Google Scholar 

  24. de Jong, M.D. et al.: Oseltamivir Resistance during Treatment of Influenza A (H5N1) Infection. N. Engl. J. Med. 353, 2667–2672 (2005)

    Article  Google Scholar 

  25. Morris, G.M. et al.: Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function. J. Computational Chemistry 19, 1639–1662 (1998)

    Article  Google Scholar 

  26. Gropp, W., Lusk, E.: Dynamic process management in an MPI setting. In: Proceedings of the 7th IEEE Symposium on Parallel and Distributed Processing (1995)

    Google Scholar 

  27. Rarey, M. et al.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996)

    Article  Google Scholar 

  28. Silva, A.M. et al.: Structure and inhibition of plasmepsin II, A haemoglobin degrading enzyme from Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 93, 10034–10039 (1996)

    Article  Google Scholar 

  29. Lamb, M.L., Jorgensen, W.L.: Computational approaches to molecular recognition. Curr. Opin. Chem. Biol. 1, 449 (1997)

    Article  Google Scholar 

  30. Case, D.A. et al.: The Amber biomolecular simulation programs. J. Computat. Chem. 26, 1668–1688 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Werner Dubitzky Assaf Schuster Peter M. A. Sloot Michael Schroeder Mathilde Romberg

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Jacq, N. et al. (2007). Grid-Enabled High Throughput Virtual Screening. In: Dubitzky, W., Schuster, A., Sloot, P.M.A., Schroeder, M., Romberg, M. (eds) Distributed, High-Performance and Grid Computing in Computational Biology. GCCB 2007. Lecture Notes in Computer Science(), vol 4360. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69968-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69968-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69841-8

  • Online ISBN: 978-3-540-69968-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics