Skip to main content

A Path Cover Technique for LCAs in Dags

  • Conference paper
Algorithm Theory – SWAT 2008 (SWAT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5124))

Included in the following conference series:

  • 734 Accesses

Abstract

We develop a path cover technique to solve lowest common ancestor (LCA for short) problems in a directed acyclic graph (dag).

Our method yields improved upper bounds for two recently studied problem variants, computing one (representative) LCA for all pairs of vertices and computing all LCAs for all pairs of vertices. The bounds are expressed in terms of the number n of vertices and the so called width w(G) of the input dag G. For the first problem we achieve \(\widetilde{O}(n^2 w(G))\) time which improves the upper bound of [18] for dags with w(G) = O( n 0.376 − δ) for a constant δ> 0. For the second problem our \(\widetilde{O}(n^2 w(G)^2)\) upper time bound subsumes the O(n 3.334) bound established in [11] for w(G) = O(n 0.667 − δ).

As a second major result we show how to combine the path cover technique with LCA solutions for dags with small depth [9]. Our algorithm attains the best known upper time bound for this problem of O(n 2.575). However, most notably, the algorithm performs better on a vast amount of input dags, i.e. dags that do not have an almost linear-sized subdag of extremely regular structure.

Finally, we apply our technique to improve the general upper time bounds on the worst case time complexity for the problem of reporting LCAs for each triple of vertices recently established by Yuster[26].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aït-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient Implementation of Lattice Operations. ACM Transactions on Programming Languages 11(1), 115–146 (1989)

    Article  Google Scholar 

  2. Aho, A., Hopcroft, J., Ullman, J.: On Finding Lowest Common Ancestors in Trees. SIAM Journal on Computing 5(1), 115–132 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barak, A., Erdös, P.: On the maximal number of strongly independent vertices in a random acyclic directed graph. SIAM J. Algebraic Discrete Methods 5, 508–514 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baumgart, M., Eckhardt, S., Griebsch, J., Kosub, S., Nowak, J.: All-Pairs Common Ancestor Problems in Weighted Directed Acyclic Graphs. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 282–293. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors in trees and directed acyclic graphs. Journal of Algorithms 57(2), 75–94 (2005); A preliminary version. In: Proc. SODA 2001, pp. 845–853 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Symbolic Computation 13, 42–49 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progression. Journal of Symbolic Computation 9, 251–290 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill Book Company, Boston (2001)

    MATH  Google Scholar 

  9. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common ancestors in directed acyclic graphs. In: The special ICALP 2005, Theoretical Computer Science, vol. 380(1-2), pp. 37–46 (2007)

    Google Scholar 

  10. Dilworth, R.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51(1), 161–166 (1950)

    Article  MathSciNet  Google Scholar 

  11. Eckhardt, S., Mühling, A., Nowak, J.: Fast Lowest Common Ancestor Computations in Dags. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 705–716. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Felsner, S., Raghavan, V., Spinrad, J.: Recognition Algorithms for Orders of Small Width and Graphs of Small Dilworth Number. Order 20(4), 351–364 (2003)

    Article  MathSciNet  Google Scholar 

  13. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  14. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J.Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications. Journal of Complexity 14, 257–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kowaluk, M., Lingas, A.: LCA queries in directed acyclic graphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 241–248. Springer, Heidelberg (2005)

    Google Scholar 

  18. Kowaluk, M., Lingas, A.: Unique Lowest Common Ancestors in Dags Are Almost as Easy as Matrix Multiplication. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 265–274. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Kowaluk, M., Lingas, A., Nowak, J.: A Path Cover Technique for LCAs in Dags. Technical Report TUM-I0809, Technische Universität München (2008)

    Google Scholar 

  20. Mucha, M., Sankowski, P.: Maximum Matchings via Gaussian Elimination. In: Proc. FOCS 2004, pp. 248–255 (2004)

    Google Scholar 

  21. Nykänen, M., Ukkonen, E.: Finding lowest common ancestors in arbitrarily directed trees. Information Processing Letters 50(6), 307–310 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schieber, B., Vishkin, U.: On Finding Lowest Common Ancestors: Simplification and Parallelization. SIAM Journal on Computing 17(6), 1253–1262 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shäffer, A.A., Gupta, S.K., Shriram, K., Cottingham Jr., R.W.: Avoiding recomputation in linkage analysis. Human Heredity 44, 225–237 (1994)

    Article  Google Scholar 

  24. Simon, K.: An Improved Algorithm for Transitive Closure on Acyclic Digraphs. Theor. Comput. Sci. 58, 325–346 (1988)

    Article  MATH  Google Scholar 

  25. Tarjan, R.E.: Applications of path compression on balanced trees. Journal of the ACM 26(4), 690–715 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yuster, R.: All-pairs disjoint paths from a common ancestor in \(\widetilde{O}(n^{\omega})\) time. Theoretical Computer Science 396(1-3), 145–150 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joachim Gudmundsson

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kowaluk, M., Lingas, A., Nowak, J. (2008). A Path Cover Technique for LCAs in Dags. In: Gudmundsson, J. (eds) Algorithm Theory – SWAT 2008. SWAT 2008. Lecture Notes in Computer Science, vol 5124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69903-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69903-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69900-2

  • Online ISBN: 978-3-540-69903-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics