Skip to main content

Detecting Alluvial Fans Using Quantitative Roughness Characterization and Fuzzy Logic Analysis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5072))

Abstract

This research, based on a similarity geometric model, uses quantitative roughness characterization and fuzzy logic analysis to map alluvial fans. We choose to work in the Italian central Apennine intermountain basins because much human activities could mask this kind of landforms and because the timing of alluvial deposition is tied to land surface instabilities caused by regional climate changes. The main aim of the research is to understand where they form and where they extent in an effort to develop a new approach using the backscatter roughness parameters and primary attributes (elevation and curvature) derived from the SRTM DEM. Moreover, this study helps to provide a benchmark against which future alluvial fans detection using roughness and fuzzy logic analysis can be evaluated, meaning that sophisticated coupling of geomorphic and remote sensing processes can be attempted, in order to test for feedbacks between geomorphic processes and topography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wood, W.F., Snell, J.B.: A quantitative system for classifying landforms. U.S. Army Quartermaster Research and Engineering Center, Natick, MA, Tech. Rep. EP-124 (1960)

    Google Scholar 

  2. Fairbridge, R.W.: The Encyclopedia of Geomorphology. Reinhold Book Corp., New York (1968)

    Google Scholar 

  3. Curran, H.A., Justus, P.S., Young, D.M., Garver, J.B.: Atlas of Landforms, 3rd edn. John Wiley and Sons, New York (1984)

    Google Scholar 

  4. Speight, J.G.: The role of topography in controlling through-flow generation: a discussion. Earth Surf. Processes Landf. 5, 187–191 (1984)

    Google Scholar 

  5. Pike, R.J.: Geomorphometry - progress, practice, and prospect. Z. Geomorph. Suppl.-Bd. 101, 221–238 (1995)

    Google Scholar 

  6. Weissel, J.K., Czuchlewski, K.R., Kim, Y.: Synthetic aperture radar (SAR)-based mapping of volcanic flows: Manam Island, Papua New Guinea. Natural Hazard and earth System Sciences 4, 339–346 (2004)

    Article  Google Scholar 

  7. Bach, D., Barbour, J., Macchiavello, G., Martinelli, M., Scalas, P., Small, C., Stark, C., Taramelli, A., Torriano, L., Weissel, J.: Integration of the advanced remote sensing technologies to investigate the dust storm areas. In: 8th ICDD Conference, Beijing, February 25-28 (2006)

    Google Scholar 

  8. Farr, T.G., Chadwick, O.A.: Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun mountains. China. J. Geophys. Res. 101(E10), 23 91–100 (1996)

    Google Scholar 

  9. Muskin, A., Gillespie, A.: Estimating sub-pixel surface roughness using remotely sensed stereoscopic data. 0-7803-8742-2/04, IEEE, 1292–1295 (2004)

    Google Scholar 

  10. Bull, W.B.: The alluvial fan environment. Progress in Physical Geography 1, 222–270 (1977)

    Article  Google Scholar 

  11. Melelli, L., Taramelli, A.: An example of debris-flows hazard modeling using GIS. Natural Hazard and earth System Sciences 4, 347–358 (2004)

    Google Scholar 

  12. Nemec, W., Steel, R.J.: What is a fan delta and how we recognize it? In: Nemec, W., Steel, R.J. (eds.) Fan Deltas: sedimentology and tectonic settings, pp. 3–13. Blackie and Son, Glasgow & London (1988)

    Google Scholar 

  13. Leeder, M.R.: Sedimentary basins: tectonic recorders of sediment discharge from drainage catchments. Earth Surf. Processes Landf. 22, 229–237 (1997)

    Article  Google Scholar 

  14. Wilson, J.P., Burrough, P.A.: Dynamic modeling, geostatistics, and fuzzy classification: new sneakers for a new geography? Annals of the Association of American Geographers 89(4), 736–746 (1999)

    Article  Google Scholar 

  15. Burrough, P.A., van Gaans, P.F.M., MacMillan, R.A.: High-resolution landform classification using fuzzy k-means. Fuzzy Sets and Systems 113, 37–52 (2000)

    Article  MATH  Google Scholar 

  16. Burrough, P.A.: GIS and geostatistics: essential partners for spatial analysis. Environmental and Ecological Statistics 8, 361–377 (2004)

    Article  MathSciNet  Google Scholar 

  17. Dehn, M., Gärtner, H., Dikau, R.: Principles of Semantic Modeling of Landform Structures. Computers & Geosciences 27, 1005–1010 (2001)

    Article  Google Scholar 

  18. Sainsbury, R.M.: What is a vague object? Analysis 49, 99–103 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pike, R.J.: Geomorphometry – diversity in quantitative surface analysis. Progress in Physical Geography 24, 1–20 (2000)

    Google Scholar 

  20. Robinson, V.B.: A Perspective on Geographic Information Systems and Fuzzy Sets. IEEE, 0-7803-74614102, 1–6 (2002)

    Google Scholar 

  21. Robinson, V.B.: Some implications of fuzzy set theory applied to geographic databases Computers. Environment and Urban Systems 12, 89–97 (1988)

    Article  Google Scholar 

  22. Zhu, A.X.: A similarity model for representing soil spatial information. Geoderma 77, 217–242 (1997)

    Article  Google Scholar 

  23. Zhu, A.X.: Measuring uncertainty in class assignment for natural resource maps using a similarity model. Photogrammetric Engineering Remote Sensing 63, 1195–1202 (1997)

    Google Scholar 

  24. MacMillan, R.A., Pettapiece, W.W., Nolan, S.C., Goddard, T.W.: A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems 113, 81–109 (2000)

    Article  MATH  Google Scholar 

  25. Argialas, D.P., Tzotsos, A.: Geomorphological feature extraction from a digital elevation model trough fuzzy knowledge-based classification. In: Ehlers, M. (ed.) Proc. SPIE, Remote Sensing for Environmental Monitoring, GIS Applications and Geology 2, vol. 4886, pp. 516–527 (2003)

    Google Scholar 

  26. Petry, F., Cobb, M., Wen, L., Yang, H.: Design of system for managing fuzzy relationships for integration of spatial data in querying. Fuzzy Sets and Systems 140, 51–73 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Robinson, V.B.: A perspective on the fundamentals of fuzzy sets and their use in geographic information systems. Transactions in GIS 7, 3–30 (2003)

    Article  Google Scholar 

  28. Dubois, D., Prade, H.: What are fuzzy rules and how to use them. Fuzzy Sets and Systems 84, 2 (1996)

    Google Scholar 

  29. Zadeh, L.A.: Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. Journal of Statistical Planning and Inference 105(1), 105–119 (2002)

    Article  MathSciNet  Google Scholar 

  30. Dikau, R.: The application of a digital relief model to landform analysis in geomorphology. In: Raper, J. (ed.) Three-dimensional applications in Geographical Information Systems, pp. 51–77. Taylor and Francis, London (1989)

    Google Scholar 

  31. Cobb, M., Petry, F., Robinson, V.: Special issue: uncertainty in geographic information systems and spatial data. Fuzzy Sets and Systems 113(1), 1–159 (2003)

    Google Scholar 

  32. Cross, V., Firat, A.: Fuzzy objects for geographical information systems. Fuzzy Sets and Systems 113(1), 19–36 (2000)

    Article  MATH  Google Scholar 

  33. Ladner, R., Petry, F., Cobb, M.: Fuzzy set approaches to spatial data mining of association rules. Transactions in GIS 7(1), 123–138 (2003)

    Article  Google Scholar 

  34. Ahamed, T.R., Gopal Rao, K., Murthy, J.S.R.: GIS-based fuzzy membership model for cropland suitability analysis. Agricultural Systems 63, 75–95 (2000)

    Article  Google Scholar 

  35. Fisher, P.F.: Fuzzy modeling. In: Openshaw, S., Abrahart, R., Harris, T. (eds.) Geocomputing, pp. 161–186. Taylor and Francis, London (2000)

    Google Scholar 

  36. Fisher, P.F.: Sorties paradox and vague geographies. Fuzzy Sets and Systems 113, 7–18 (2000)

    Article  Google Scholar 

  37. Usery, E.L.: A conceptual framework and fuzzy set implementation for geographic features. In: Burrough, P.A., Frank, A. (eds.) Geographic objects with indeterminate boundaries, pp. 87–94. Taylor & Francis, London (1996)

    Google Scholar 

  38. Irvin, B.J., Ventura, S.J., Slater, B.K.: Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 77, 137–154 (1997)

    Article  Google Scholar 

  39. Burrough, P.A., MacMillan, R.A., Van Deursen, W.: Fuzzy classification methods for determining land suitability from soil profile observations. J. Soil Science 43, 193–210 (1992)

    Article  Google Scholar 

  40. Burrough, P.A., van Gaans, P., Hootsmans, R.: Continuous classification in soil survey: Spatial correlation, confusion and boundaries. Geoderma 77, 115–135 (1997)

    Article  Google Scholar 

  41. McBratney, A.B., De Gruijter, J.J.: A continuum approach to soil classification by modified fuzzy k-mean with extragrades. J. Soil Science 43, 159–175 (1992)

    Article  Google Scholar 

  42. McBratney, A.B., Odeh, I.O.A.: Application of fuzzy sets in soil science: Fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 77, 85–113 (1997)

    Article  Google Scholar 

  43. Zhu, A.X., Band, L.E., Vertessy, R., Dutton, B.: Deriving soil property using a soil land inference model (SoLIM). Soil Sci. Soc. Am. J. 61, 523–533 (1997)

    Google Scholar 

  44. Zhu, A.X., Band, L.E., Dutton, B., Nimlos, T.: Automated soil inference under fuzzy logic Ecol. Modell 90, 123–145 (1996)

    Article  Google Scholar 

  45. Ulaby, F.T., Moore, R.K., Fung, A.K.: Microwave Remote Sensing, vol. 2. Addison-Wesley, Reading (1982)

    Google Scholar 

  46. Greeley, R., Blumberg, D.G., McHone, J.F., Dobrovolkis, A., Iversen, J.D., Rasmussen, K.R., Wall, S.D., White, B.R.: Applications of spaceborne radar laboratory data to the study of aeolian processes. Jour. Geophys. Res. 102, 10, 971–983 (1997)

    Article  Google Scholar 

  47. Greeley, R., Blumberg, D.G., Dobrovolskis, A.R., Gaddis, L.R., Iversen, J.D., Lancaster, N., Rasmussen, K.R., Saunders, R.S., Wall, S.D., White, B.R.: Potential transport of windblown sand: Influence of surface roughness and assessment with radar data. In: Tchakerian, V.P. (ed.) Desert Aeolian Processes, pp. 75–99. Chapman & Hall, London (1995)

    Google Scholar 

  48. Prigent, C., Tegen, I., Aires, F., Marticorena, B., Zribi, M.: Estimation of aerodynamic roughness length in arid and semi-arid regions over the globe with the ERS scatterometer. Jour. Geophys. Res., 110, 12 (2005)

    Google Scholar 

  49. Laurent, B., Marticorena, B., Bergametti, G., Chazette, P., Maignan, F., Schmechtig, C.: Simulation of the mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness length map derived from the POLDER/ADEOS I surface products. Jour. Geophys. Res. 110, 21 (2005)

    Article  Google Scholar 

  50. Benallegue, M., Taconet, O., Vidal-Madjar, D., Normand, M.: The Use of Radar Backscattering Signals for Measuring Soil Moisture and Surface Roughness. Remote Sensing of Environment 53(1), 61–68 (1995)

    Article  Google Scholar 

  51. Dierking, W.: Quantitative Roughness Characterization of Geological Surfaces and Implications for Radar Signature Analysis. IEEE Transaction on Geoscience and Remote Sensing 7(5), 2397–2412 (1999)

    Article  Google Scholar 

  52. Band, L.E., Moore, I.D.: Scale: landscape attributes and Geographical Information Systems. Hydrological Process 9, 401–422 (1995)

    Article  Google Scholar 

  53. Wang, F.: A fuzzy grammar and possibility theory-based natural language user interface for spatial queries. Fuzzy Sets and Systems 113(1), 147–159 (2000)

    Article  MATH  Google Scholar 

  54. Cattuto, C., Gregori, L., Melelli, L., Taramelli, A., Broso, D.: I Conoidi nell’Evoluzione delle Conche Intermontane Umbre. Geografia Fisica e Dinamica del Quaternario 7, 89–95 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taramelli, A., Melelli, L. (2008). Detecting Alluvial Fans Using Quantitative Roughness Characterization and Fuzzy Logic Analysis. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69839-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69839-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69838-8

  • Online ISBN: 978-3-540-69839-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics