Skip to main content

A Simple, General Model for the Affine Self-similarity of Images

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

A series of extensive numerical experiments indicates that images, in general, possess a considerable degree of affine self-similarity, that is, blocks are well approximated by a number of other blocks – at the same or different scales – when affine greyscale transformations are employed. We introduce a simple model of affine image self-similarity which includes the method of fractal image coding (cross-scale, affine greyscale similarity) and the nonlocal means denoising method (same-scale, translational similarity) as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, S.K.: Multiscale Methods in Image Modelling and Image Processing, Ph.D. Thesis, Dept. of Applied Mathematics, University of Waterloo (2005)

    Google Scholar 

  2. Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1988)

    MATH  Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modelling and Simulation 4, 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Proc. 16, 2080–2095 (2007)

    Article  Google Scholar 

  5. Ebrahimi, M., Vrscay, E.R.: Solving the Inverse Problem of Image Zooming Using “Self-Examples”. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 117–130. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Elad, M., Datsenko, D.: Example-based regularization deployed to super-resolution reconstruction of a single image. The Computer Journal 50, 1–16 (2007)

    Google Scholar 

  7. Etemoglu, C., Cuperman, V.: Structured vector quantization using linear transforms. IEEE Trans. Sig. Proc. 51, 1625–1631 (2003)

    Article  MathSciNet  Google Scholar 

  8. Fisher, Y. (ed.): Fractal Image Compression: Theory and Application. Springer, New York (1995)

    Google Scholar 

  9. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comp. Graphics Appl. 22, 56–65 (2002)

    Article  Google Scholar 

  10. Ghazel, M., Freeman, G., Vrscay, E.R.: Fractal image denoising. IEEE Trans. Image Proc. 12, 1560–1578 (2003)

    Article  Google Scholar 

  11. Ghazel, M., Freeman, G., Vrscay, E.R.: Fractal-wavelet image denoising. IEEE Trans. Image Proc. 15, 2669–2675 (preprint, 2006)

    Article  Google Scholar 

  12. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, New Jersey (2002)

    Google Scholar 

  13. Hamzaoui, R.: Encoding and decoding complexity reduction and VQ aspects of fractal image compression, Ph.D. Thesis, University of Freiburg (1998)

    Google Scholar 

  14. Hamzaoui, R., Müller, M., Saupe, D.: VQ-enhanced fractal image compression. In: ICIP 1996. IEEE, Los Alamitos (1996)

    Google Scholar 

  15. Hamzaoui, R., Saupe, D.: Combining fractal image compression and vector quantization. IEEE Trans. Image Proc. 9, 197–207 (2000)

    Article  MATH  Google Scholar 

  16. Lepsoy, S., Carlini, P., Oien, G.: On fractal compression and vector quantization. In: Fisher, Y. (ed.) Fractal Image Encoding and Analysis. NATO ASI Series F, vol. 159. Springer, Heidelberg (1998)

    Google Scholar 

  17. Lu, N.: Fractal Imaging. Academic Press, New York (1997)

    MATH  Google Scholar 

  18. Ruderman, D.L.: The statistics of natural images. Network: Computation in Neural Systems 5, 517–548 (1994)

    Article  MATH  Google Scholar 

  19. Zhang, D., Wang, Z.: Image information restoration based on long-range correlation. IEEE Trans. Cir. Syst. Video Tech. 12, 331–341 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alexander, S.K., Vrscay, E.R., Tsurumi, S. (2008). A Simple, General Model for the Affine Self-similarity of Images. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics