Skip to main content

Industrial Biofilms and their Control

  • Chapter
Marine and Industrial Biofouling

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 4))

Biofilms are considered to be ubiquitous in industrial and drinking water distribution systems. Biofilms are a major source of contribution to biofouling in industrial water systems. The problem has wide ranging effects, causing damage to materials, production losses and affecting the quality of the product. The problem of biofouling is operationally defined as biofilm development that exceeds a given threshold of interference. It is for the plant operators to keep biofilm development below the threshold of interference for effective production and to work out values for threshold limits for each of the technical systems. Industrial biofilms are quite diverse and knowledge gained with a certain type of biofilm may not be applicable to others. In recognition of this, the old concept of a universal/effective biocide is a misnomer as physical, chemical and biological parameters of source water vary from site to site and so do the interactions of biocides with these parameters. Control methods have to be tailor-made for a given technical system and cannot be extrapolated. Because of the wide-ranging complexity in industrial technical systems, understanding the biofilm processes, detection, monitoring, control and management is imperative for efficient plant operation. A successful antifouling strategy involves prevention (disinfecting regularly, not allowing a biofilm to develop beyond a given threshold), killing of organisms and cleaning of surfaces. Killing of organisms does not essentially imply cleaning as most industrial systems deploy only biocides for killing, and the cleaning process is not achieved. Cleaning is essential as dead biomass on surfaces provide a suitable surface and nutrient source for subsequent attachment of organisms. A first step in a biofilm control programme is detection and assessment of various biofilm components, like thickness of slime layer, algal and bacterial species involved, extent of extracellular polymeric substances and inorganic components. Prior to adopting a biocidal dose and regime in an industrial system, laboratory testing of biocides using side-stream monitoring devices, under dynamic conditions, should be carried out to check their effectiveness. Online monitoring strategies should be adopted and biocidal dosing fine-tuned to keep biofilms under control. Literature on biofilm control strategies in technical systems is rich; however, the choice of the control method often depends on cost, time constraints and the cleanliness (threshold levels) required for a technical process. Currently, there is a trend to use strong oxidizing biocides like chlorine dioxide in cooling systems and ozone in water distribution systems as low levels of chlorine have been found to be ineffective against biofilms. A number of non-oxidizing biocides are available, which are effective but the long-term effects on the environment are still unclear. New techniques for biofilm control like ultrasound, electrical fields, hydrolysis of extracellular polymeric substances and methods altering biofilm adhesion and cohesion are still in their infancy at the laboratory level and are yet to be successfully demonstrated in large industrial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • APHA (1995) Standard methods for the examination of water and wastewater 19th edn. American Public Health Association/American Water Works Association/Water Environment Federation, APHA Washington DC, 9:34–9:41

    Google Scholar 

  • Azeredo J, Pacheco AP, Lopes I, Oliveira R, Vieira MJ (2003) Monitoring cell detachment by surfactants in a parallel plate flow chamber. In: Proceedings of the 2002 international specialized conference on biofilm monitoring. Water Sci Technol 47:77–82

    Google Scholar 

  • Barbeau B, Desjardin R, Mysore C, Prevost M (2005) Impacts of water quality on chlorine and chlorine dioxide efficacy in natural waters. Water Res 39:2024–2033

    PubMed  CAS  Google Scholar 

  • Bloch KP, DiFranco P (1995) Preventing MIC through experimental on-line fouling monitoring. National Association of Corrosion Engineers annual conference; paper no 257

    Google Scholar 

  • Blank LW (1984) Control of algal biofouling at High Marnham; 1981–83. CERL note no TPRD/ L/2649/N84, Central Electricity Research Laboratories, Leatherhead

    Google Scholar 

  • Blakke R, Olsson PQ (1986) Biofilm thickness measurements by light-microscopy. J Microbiol Methods 5:93–98

    Google Scholar 

  • Bott TR, Pinheiro MMVPS (1977) Biological fouling — velocity and temperature effects. Can J Chem Eng 55:473

    CAS  Google Scholar 

  • Bott TR, Gunatillaka M (1983) Nutrient composition and biofilm thickness In: Bryers RW, Cole SS (eds.) Fouling of heat exchanger surfaces. United Engineering Trustees New York, pp. 727–734

    Google Scholar 

  • Bott TR, Melo LF (1992) Particle—bacteria interactions in biofilms In: Melo LF, Bott TR, Fletcher M, Capdeville B (eds.) Biofilms — science and technology. NATO ASI Series Kluwer Academic Netherlands pp. 199–206

    Google Scholar 

  • Wimpenny W, Nichols D, Sticker, Lappin-Scott H (eds.) Bacterial biofilms and their control in medicine and industry Bioline, Cardiff

    Google Scholar 

  • Bott TR (1995) Fouling of heat exchangers Elsevier, Amsterdam p. 524

    Google Scholar 

  • Bott TR (1999) Biofilms in process and industrial waters: the biofilm ecology of microbial bio-fouling, biocide resistance and corrosion. In: Keevil CW, Godfree A, Holt D, Dow C (eds.) Biofilms in the aquatic environment. Royal Society of Chemistry, London pp. 80–92

    Google Scholar 

  • Brannon DK (1997) Cosmetic microbiology: a practical handbook. CRC, Boca Raton

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    PubMed  CAS  Google Scholar 

  • Bruijs MCM, Venhuis LP, Jenner HA, Licina GJ, Daniels D (2001) Biocide optimization using an on-line biofilm monitor. Power Plant Chem 3(7):400–405

    CAS  Google Scholar 

  • Brözel VS, Pietersen B, Cloete TE (1995) Resistance of bacterial cultures to non-oxidizing water treatment bactericides by adaptation. Water Sci Technol 31(5–6):169–175

    Google Scholar 

  • Busscher HJ, Handley PS, Bos R, van der Mei HC (1999) Physico-chemistry of microbial adhesion from an overall approach to the limits. In: Baszkin A, Norde W (eds.) Physical chemistry of biological interfaces Marcel Dekker, New York pp. 431–458

    Google Scholar 

  • Busscher HJ, Bos HC, van der Mei H (1995) Initial microbial adhesion is a determinant for the strength of biofilm adhesion. FEMS Microbiol Let 128:229–234

    CAS  Google Scholar 

  • Busscher HJ, van der Mei H (1997) Physico-chemical interactions in microbial adhesion and relevance for biofilm formation. Adv Dent Res 11:24–32

    PubMed  CAS  Google Scholar 

  • Butterfield PW, Camper AK, Ellis BD, Jones WL (2002) Chlorination of model drinking water biofilm: implications for growth and organic carbon removal. Water Res 36:4391–4405

    PubMed  CAS  Google Scholar 

  • Campanac C, Pineau L, Payard A, Baziar-Mouysset G, Roques C (2002) Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother 46:1469–1474

    PubMed  CAS  Google Scholar 

  • Camper AK (1993) Coliform regrowth and biofilm accumulation in drinking water systems: a review In: Geesey GG, Lewandowski Z, Flemming HC (eds.) Biofouling/biocorrosion in industrial systems Lewis Chelsea, MI

    Google Scholar 

  • Camper AK (1996) Factors limiting microbial growth in distribution systems: laboratory and pilot-scale experiments. AWWA Research Foundation, Denver

    Google Scholar 

  • Cassels JM, Yahya MT, Gerba CP, Rose JB (1995) Efficacy of a combined system of copper and silver and free chlorine for inactivation of Naegleria fowleri amoebas in water. Water Sci Technol 31:119–122

    Google Scholar 

  • Chambers CW, Protor CM, Kabler PW (1962) Bactericidal effect of low concentrations of silver. J Am Water Works Assoc 54:208–216

    CAS  Google Scholar 

  • Chalut J, D'Arise K, Bodkin PM, Stodolka C (1995) Identification of cooling water biofilm using a novel ATP monitoring technique and their control with the use of biodispersants. In: Corrosion/88. NACE International Houston, paper no 211

    Google Scholar 

  • Chandy JP, Angles ML (2001) Determination of nutrients limiting biofilm formation and the subsequent impact of disinfectant decay. Water Res 35:2677–2682

    PubMed  CAS  Google Scholar 

  • Characklis WG (1988) Bacterial regrowth in distribution systems. AWWA Research Foundation, Denver, p. 332

    Google Scholar 

  • Characklis WG (1990): Microbial fouling. In: W.G. Characklis, K.C. Marshall (eds.) Biofilms. Wiley, New York, 523–584

    Google Scholar 

  • Characklis WG, Marshall K (1990) Biofilms: a basis for an interdisciplinary approach. Wiley New York, pp. 3–15

    Google Scholar 

  • Chen X, Stewart PS (2000) Biofilm removal caused by chemical treatments. Water Res 34:4229–4233

    CAS  Google Scholar 

  • Chelossi E, Faimali M (2005) Comparative assessment of antimicrobial efficacy of new potential biocides for treatment of cooling and ballast waters Sci Total Environ

    Google Scholar 

  • Chexal B, Horowitz J, Munson D, Spalaris C, Angell P, Gendron T, Ruscak M (1997) Biofilm monitoring in power plant waters for use in prediction and control of MIC EPRI. Presented at tenth service water reliability improvement seminar, Denver, CO

    Google Scholar 

  • Chick H (1908) An investigation of the laws of disinfection. J Hygiene 8:92–158

    CAS  Google Scholar 

  • Christensen BE, Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC (eds.) Biofilms. Wiley, New York, pp. 93–130

    Google Scholar 

  • Cloete TE, Jacobs L, Brozel VS (1997) The chemical control of biofouling in industrial water systems. Biodegradation 9:23–37

    Google Scholar 

  • Cloete TE, Westaard D, van Vuuren SJ (2003) Dynamic response of biofilm to pipe surface and fluid velocity. Water Sci Technol 47(5):57–59

    PubMed  CAS  Google Scholar 

  • Codony F, Morato J, Mas J (2005) Role of discontinuous chlorination on microbial production by drinking water biofilms. Water Res 39:1896–1906

    PubMed  CAS  Google Scholar 

  • Daley RJ, Hobbie JE (1975) Direct counts of aquatic bacteria by a modified Epifluorescence technique. Limnology and Oceanography 20:875–883

    Google Scholar 

  • Donlan RM (2000) Biofilm control in industrial water systems: Approaching an old problem in new ways In: Evans LV (ed.) Biofilms: recent advances in their study and control Harwood Academic Netherlands, pp. 333–360

    Google Scholar 

  • Donlan RM, Pipes WO, Yohe TL (1994) Biofilm formation on cast iron substrata in water distribution systems. Water Res 28:1497–1503

    CAS  Google Scholar 

  • Donlan RM, Forster T, Murga R, Brown E, Lucas C, Carpenter J, Fields B (2005) Legionella pneumophila associated with the protozoan Hartmannella vermiformis in a model multi-species biofilm has reduced susceptibility to disinfectants. Biofouling 21(1):1–7

    PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers A, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Ewans DW, Griffiths JS, Koopmans R (1992) Options for controlling zebra mussels. Ontario Hydro Res Rev 7:1–25

    Google Scholar 

  • Exner M, Tuschewitski GJ, Scharnagel J (1987) Influence of biofilms by chemical disinfection and mechanical cleaning. Zentrablatt Bakteriologie Mikrobiologie Hygeine B. 183:549–563

    CAS  Google Scholar 

  • Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaire disease: 25 years of investigation. Clin Microbiol Rev 15:506–526

    PubMed  Google Scholar 

  • Flemming H-C (2002) Biofouling in water systems-cases causes and countermeasures. Appl Microbiol Biotechnol 59(6):629–640

    PubMed  CAS  Google Scholar 

  • Flemming H-C (2003) Role and levels of real time monitoring for successful anti-fouling strategies. Water Sci Technol 47 (5):1–8

    PubMed  CAS  Google Scholar 

  • Flemming H-C, Griebe T (2000) Control of biofilms in industrial waters and processes In: Walke r J Surman S, Jass J (eds.) Industrial biofouling. Wiley, New York, pp. 125–141

    Google Scholar 

  • Flemming H-C, Leis A (2002) Sorption properties of biofilms. In: Bitton G (ed.) Encyclopedia of environmental microbiology, vol 5. Wiley, New York, pp. 2958–2967

    Google Scholar 

  • Flemming H-C, Schaule G (1996) Biofouling. In: Heitz E, Sand W, Flemming HC (eds.) Microbially influenced corrosion of materials-scientific and technological aspects. Springer, Heidelberg Berlin New York, pp. 39–54

    Google Scholar 

  • Flemming H-C, Wingender J (2002): Extracellular polymeric substances: structure, ecological functions, technical relevance. In: Bitton G (ed.) Encyclopedia of environmental microbiology, vol 3. Wiley, New York, pp. 1223–1231

    Google Scholar 

  • Flemming H-C, Griebe T, Schaule G (1996) Antifouling strategies in technical systems: a short review. Water Sci Technol 34(5–6):517–524

    CAS  Google Scholar 

  • Flemming H-C, Tamachkiarowa A, Klahre J, Schmitt J (1998) Monitoring of fouling and biofoul-ing in technical systems. Water Sci Technol 38(8–9):291–298

    CAS  Google Scholar 

  • Flemming H-C, Wingender J, Moritz R, Mayer C (1999): The forces that keep biofilms together. In: Keevil W, Godfree AF, Holt DM, Dow CS (eds.) Biofilms in aquatic systems. Royal Society of Chemistry, Cambridge, pp. 1–12

    Google Scholar 

  • Fliermans CB, Bettinger GE, Fynsk AW (1982) Treatment of cooling systems containing high levels of Legionella pneumophila. Water Res 16(6):903–909

    Google Scholar 

  • Gagnon GA, Stawson RM (1999) An efficient biofilm removal method for bacterial cells exposed to drinking water. J Microbiol Methods 34:203–214

    Google Scholar 

  • Gagnon GA, Rand JL, O'Leary KC, Rygel AC, Chauret C, Andrews RC (2005) Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms. Water Res 39:1809–1817

    PubMed  CAS  Google Scholar 

  • Geesey GG, White GC (1990) Determination of bacterial growth and activity at solid—liquid interfaces. Ann Rev Microbiol 44:579–602

    CAS  Google Scholar 

  • Gilbert P, Das JR, Jones MB, Allison D (2001) Assessment of resistance towards biocides following the attachment of micro-organisms to, and growth on, surfaces. J Appl Microbiol 91(2):248–254

    PubMed  CAS  Google Scholar 

  • Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms influx cross-resistance? J Appl Microbiol 92:98S–110S

    PubMed  Google Scholar 

  • Goysich MJ, McCoy WF (1989) A quantitative method for determining the efficacy of algicides in industrial cooling towers. J Ind Microbiol 4:429–434

    CAS  Google Scholar 

  • Griebe T, Flemming HC (1998) Biocide-free antifouling strategy to protect RO membranes from biofouling. Desalination 118:153–156

    CAS  Google Scholar 

  • Gunten Urs von (2003) Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37:1469–1487

    Google Scholar 

  • Harris A (1999) Problems associated with biofilms in cooling tower systems. In: Keevil CV, Godfree A, Holt D, Dow C (eds.) Biofilms in the aquatic environment. Springer, Berlin Heidelberg New York, pp. 139–144

    Google Scholar 

  • Huang CT, Yu FP, McFeters GA, Stewart PS (1995) Non-uniform spatial patterns of respiratory activity with biofilms during disinfection. Appl Environ Microbiol 61:2252–2256

    PubMed  CAS  Google Scholar 

  • Jahnknecht P, Melo L (2003) Online biofilm monitoring. Rev Environ Sci Biotechnol. 2:269–283

    Google Scholar 

  • Jenner HA, Whitehouse JW, Taylor CJL, Khalanski M (1998) Cooling water management in European power stations: biology and control of fouling. Hydroecologie Appliquee 10(1–2)225

    Google Scholar 

  • Jones DS, O'Rourke PC, Caine CS (1993) Detection and control of microbiologically influenced corrosion in a Rocky Mountain oil production system-a case history National Association of Corrosion Engineers annual conference, paper no 311

    Google Scholar 

  • Junli H, Li W, Nanqi R, Fang MA, Juli (1997a) Disinfection effect of chlorine dioxide on bacteria in water. Water Res 31(3):607–613

    Google Scholar 

  • Junli H, Li W, Nenqi R, Li LX, Fun SR, Guanle Y (1997b) Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water. Water Res 31(3):455–460

    Google Scholar 

  • Keevil CW, Mackerness CW, Colbourne JS (1990) Biocide treatment of biofilms. Int Biodeter Biodeg 26:169–179

    CAS  Google Scholar 

  • Keevil CW, Walker JT, Maule A, James BW (1999) Persistence and physiology of Escherichia coli O157:H7 in the environment. In: Duffy G, Garvey P, Coia J, Wasteson W, McDowell D(eds.) Verocytotoxigenic E. coli in Europe: survival and growth. Teagasc, Dublin, pp. 42–52

    Google Scholar 

  • Kim BR, Anderson JE, Mueller SA, Gaines WA, Kendall AM (2002a) Literature review-efficacy of various disinfectants against Legionella in water systems. Water Res 36:4433–4444

    CAS  Google Scholar 

  • Kim J, Cho M, Chung WK, Kang SJ, Yoon JY (2002b) Biogrowth control in cooling tower with EEKO-BALL. Fall conference of Korean Society of Water and Wastewater, abstract A-47

    Google Scholar 

  • Korstgens V, Flemming HC, Wingender J, Borchard W (2001) Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J Microb Method 46:9–17

    CAS  Google Scholar 

  • Kusnetsov J, Livanainem E, Elomaa N, Zacheus O, Martikainen PJ (2001) Copper and silver ions more effective against Legionella than against mycobacteria in a hospital warm water system. Water Res 35:4217–4225

    PubMed  CAS  Google Scholar 

  • LeChevallier MW, Babcock TM, Lee RG (1987) Examination and characterization of distribution system biofilms. Appl Environ Microbiol 53:2714–2724

    PubMed  CAS  Google Scholar 

  • LeChevallier MW, Cawthon CD, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499

    PubMed  CAS  Google Scholar 

  • Lehtola JM, Laxander M, Miettinen TI, Hirvonen A, Vartiainen T, Martikainen PJ (2006) The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes. Water Res 40:2151–2160

    PubMed  CAS  Google Scholar 

  • Lowe MJ (1988) The effect of inorganic particulate materials on the development of biological films. PhD thesis, University of Brimingham

    Google Scholar 

  • Ludensky M (2003) Control and monitoring of biofilms in industrial applications. Int Biodeter Biodeg 51:255–263

    Google Scholar 

  • Lutz P, Merle G (1983) Discontinuous mass chlorination of natural draft cooling towers. Water Sci Tech15:197–213

    CAS  Google Scholar 

  • Martin RS, Gates WH, Tobin RS, Sumarah R, White P, Forestall P (1982) Factors affecting colif-orm bacterial growth in distribution systems. J Am Water Works Assoc 74:34–37

    Google Scholar 

  • Maukonen J, Matto J, Wirtanen G, Raaska L, Matila-Sandholm T, Saarela M (2003) Methodologies for the characterization of microbes in industrial environments: a review. J Ind Microbiol Biotech 30:327–356

    CAS  Google Scholar 

  • McBain AJ, Ledder RG, Moore LE, Catrenich CE, Gilbert P (2004) Effect of quaternary ammonium based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl Environ Microbiol 3449–3456

    Google Scholar 

  • McCoy WF, Costerton JW (1982) Fouling biofilm development in tubular flow systems. Dev Ind Microbiol 23:551–558

    Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity action and resistance. Clin Microbial Rev 12:147–179

    CAS  Google Scholar 

  • Merle G, Montanat M (1980) Essai d'utilisation du dioxyde de chlore dans la boucle TERA instal-lee a Montereau: resultats des tests d'efficacite EDF DER report HE/31–80.045

    Google Scholar 

  • Melo LF, Bott TR (1997) Biofouling in water systems. Exp Therm Fluid Sci 14:375–381

    CAS  Google Scholar 

  • Meyer B (2003) Approaches to the prevention, removal and killing of biofilms. Int Biodeter Biodeg 51:249–253

    CAS  Google Scholar 

  • Meyer B (2006) Does microbial resistance to biocides create a hazard to food hygiene? Int J Food Microbiol 112:275–279

    PubMed  Google Scholar 

  • Mojica K, Elsey D, Cooney MJ (2007) Quantitative analysis of biofilm EPS uronic acid content. J Microb Methods 71(1):61–65

    CAS  Google Scholar 

  • Momba MNB, Cloete TE, Venter SN, Kfir R (1998) Evaluation of the impact of disinfection processes on the formation of biofilms in potable surface water distribution systems. Water Sci Technol 38(8–9):283–289

    CAS  Google Scholar 

  • Murphy HM, Payne SJ, Gagnon GA (2008) Sequential UV- and chlorine-based disinfection to mitigate Escherichia coli in drinking water biofilms. Water Res 42(8–9):2083–2092 doi:10.1016/j.watres.2007.12.020

    PubMed  CAS  Google Scholar 

  • Murthy PS, Venkatesan R, Nair KVK Inbakandan D, Syed Jehan S, Magesh Peter D, Ravindran M (2005) Evaluation of sodium hypochlorite for fouling control in plate heat exchanger for seawater application. Int Biodeter Biodeg 55:161–170

    CAS  Google Scholar 

  • Nagy LA, Kelly AJ, Thun MA, Olson BH (1982) Biofilm composition formation and control in the Los Angeles aqueduct system. In: Proceedings of the American Water Works Association water quality technology conference. American Water Works Association, Denver, pp. 141–160

    Google Scholar 

  • Nebot E, Casanueva JF, Casanueva T, Sales D (2007) Model for fouling deposition on power plant steam condensers cooled with seawater: Effect of water velocity and tube material. Int J Heat Mass Transfer 50:3351–3358

    CAS  Google Scholar 

  • Oliveri VP, Bakalian AE, Bossung KW, Lowther ED (1985) Recurrent coliforms in water distribution systems and the presence of free residual chlorine. In: Jolley RL, Bull RJ, Davis WP, Katz S, Roberts MH, Jacobs VA (eds.) Water chlorination chemistry environmental impact and health effects Lewis Boca Raton

    Google Scholar 

  • Ozlem N, Sanli-Yurudu, Ayten Kimiran-Erdem, Aysin C (2007) Studies on the efficacy of chlo-ramine T trihydrate (N-chloro-p -toluene sulfonamide) against planktonic and sessile populations of different Legionella pneumophila strains. Int J Hyg Environ-Health 210:147–153

    Google Scholar 

  • Pedahzur R, Shoval HI, Ulitzur S (1997) Silver and hydrogen peroxide as potential drinking water disinfectants their bactericidal effects and possible modes of action. Water Sci Technol 35:87–93

    CAS  Google Scholar 

  • Pedersen K (1982) Factors regulating microbial biofilm development in a system with slowly flowing seawater. Appl Environ Microbiol 44:1196–1204

    PubMed  Google Scholar 

  • Percival SL (2000) Detection of biofilms in industrial waters and processes. In: Walker J, Surman S, Jass J (eds.) Industrial biofouling detection prevention and control. Wiley, Toronto, pp. 103–124

    Google Scholar 

  • Petrucci G, Rosellini X (2005) Chlorine dioxide in seawater for fouling control and ost disinfection in potable waterworks. Desalination 182:283–291

    CAS  Google Scholar 

  • Peyton BM (1996) Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density. Water Res 30(1):29–36

    CAS  Google Scholar 

  • Pinheiro MM, Melo LF, Bott TR, Pinheiro JD, Leitao L (1988) Surface phenomena and hydrody-namic effects on deposition of Pseudomonas fluorescens. Can J Chem Eng 66:63–67

    CAS  Google Scholar 

  • Prince EL, Muir AVG, Thomas WM, Stollard RJ, Sampson M, Lewis JA (2002) An evaluation of the efficacy of Aqualox for microbiological control of industrial cooling tower systems. J Hosp Infect 52:243–249

    PubMed  CAS  Google Scholar 

  • Pujo M, Bott TR (1991) Effects of fluid velocities and Reynolds numbers on biofilm development in water systems. In: Keffer JF, Shah RK, Ganie EN (eds.) Experimental heat transfer, fluid mechanics and thermodynamics. Elsevier, New York pp. 1358–1362

    Google Scholar 

  • Rand JL, Hofmann R, Alam MZB, Chauret C, Cantwell R, Andrews RC, Gagnon GA (2007) A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection. Water Res 41:1939–1948

    PubMed  CAS  Google Scholar 

  • Reilly KJ, Kippen JS (1984) Relationship of bacterial counts with turbidity and free chlorine in two distribution systems. J Am Water Works Assoc 75:309–314

    Google Scholar 

  • Rickard HA, McBain AJ, Stead AT, Gilbert P (2004) Shear rate moderates community diversity in freshwater biofilms. Appl Environ Microbiol 70:7426–7435

    PubMed  CAS  Google Scholar 

  • Rosa DES, Sconza F, Volterra L (1998) Biofilm amount estimation by fluorescein diacetate. Water Res 32(9):2621–2626

    Google Scholar 

  • Rupp CJ, Fux CA, Stoodley P (2005) Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol 71(5):2175–2178

    PubMed  CAS  Google Scholar 

  • Rutala WA, Weber DJ (2001) New disinfection and sterilization methods. Emerging Infect Dis 7(2):348–353

    PubMed  CAS  Google Scholar 

  • Sanden G, Fields BS, Barbaree JM, Feeley JC (1989) Viability of Legionella pneumophila in chlorine free waters at elevated temperatures. Curr Microbiol 18:61–65

    Google Scholar 

  • Sauer K, Camper AK (2001) Characterization of phenotypic changes in Pseudomonas putida in response to surface associated growth. J Bacteriol 183:6579–6589

    PubMed  CAS  Google Scholar 

  • Schaule G, Flemming HC, Ridgway HF (1993) Use of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) for quantifying planktonic and sessile respiring bacteria in drinking water. Appl Environ Microbiol 59:3850–3857

    PubMed  CAS  Google Scholar 

  • Schulte S, Wingender J, Flemming HC (2005) Efficacy of biocides against biofilms. In: Paulus W (ed.) Directory of microbicides for the protection of materials and processes. Kluwer Academic, Doordrecht, pp. 90–120

    Google Scholar 

  • Shimizu MK, Okuzumi A, Yoneyama T, Kunisada M, Araake H, Ogawa, Kimura S (2002) In vitro antiseptic susceptibility of clinical isolates from nosocomial infections. Dermatology 204(Suppl 1):21–27

    PubMed  CAS  Google Scholar 

  • Simoes M, Carvalho H, Pereira MO, Vieira MJ (2003) Studies on the behaviour of Pseudomonas fluorescens biofilms after ortho-phthalaldehyde treatment. Biofouling 19:151–157

    PubMed  CAS  Google Scholar 

  • Simoes M, Pereira MO, Vieira MJ (2005a) Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res 39:478–486

    CAS  Google Scholar 

  • Simoes M, Pereira MO, Vieira MJ (2005b) Validation of respirometry as a short term method to assess the toxic effect of a biocide. Biofouling 47:217–223

    Google Scholar 

  • Simoes M, Pereira MO, Machado I, Simoes LC, Vieira MJ (2006a) Comparitive antibacterial potential of selected aldehyde based biocides and surfactants against planktonic Pseudomonas fluorescens. J Ind Microbiol Biotech 33:741–749

    CAS  Google Scholar 

  • Simoes M, Simoes LC, Machado I, Pereira MO, Vieira MJ (2006b) Control of flow generated biofilms with surfactants — Evidence of resistance and recovery. Inst Chem Eng 84(c4):338–345

    CAS  Google Scholar 

  • Simoes LC, Simoes M, Oliveira R, Vieira M (2007) Potential of the adhesion of bacteria isolated from drinking water to materials. J Basic Microbiol 47:174–183

    PubMed  CAS  Google Scholar 

  • Simoes M, Simoes LC, Cleto S, Pereira MO, Vieira MJ (2008) The effects of a biocide and a surfactant on the detachment of Pseudomonas fluorescens from glass surfaces. Int J Food1 Microbiol 121:335–341

    CAS  Google Scholar 

  • Smith AJ, Bagg J, Hood J (2001) Use of chlorine dioxide to disinfect dental unit waterlines. J Hosp Infect 49:285–288

    PubMed  CAS  Google Scholar 

  • Son H, Cho M, Kim J, Oh B, Chung H, Yoon J (2005) Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine. Water Res 39:721–727

    PubMed  CAS  Google Scholar 

  • States S, Kuchta J, Young W, Conley L, Ge J, Costello M, Dowling J, Wadowsky R (1998) Controlling Legionella using copper-silver ionization. J Am Water Works Assoc 90:122–129

    CAS  Google Scholar 

  • Stoodley P, Boyle J, Cunningham AB, Dodds I, Lappin-Scott HM, Lewandowski Z (1999) Biofilm structure and influence on biofouling under laminar and turbulent flows In: Keevil CW, Godfree A, Holt D, Dow C (eds.) Biofilms in the aquatic environment. Royal Society of Chemistry Cambridge pp. 13–24

    Google Scholar 

  • Surdeau N, Laurent-Maquin X, Bouthors S, Gelle MP (2006) Sensitivity of bacterial biofilms and planktonic cells to a new antimicrobial agent, Oxsil 320 N. J Hosp Infect 62:487–493

    PubMed  CAS  Google Scholar 

  • Suci PA, Vrany JD, Mittelman MW (1998) Investigation of interactions between antimicrobial agents and bacterial biofilms attenuated total reflection Fourier transform infrared spectros-copy. Biomaterials 19:327–339

    PubMed  CAS  Google Scholar 

  • Surman SB, Walker JT, Goddard DT, Morton LHG, Keevil CW, Weaver W, Skinner A, Hanson K, Caldwell D, Kurtze J (1996) Comparison of microscope techniques for the examination of biofilms. J Microbiol Method 2(5):57–70

    Google Scholar 

  • Tamachkiarow A, Flemming H-C (2003) On-line monitoring of biofilm formation in a brewery water pipeline system with a fibre optical device (FOS). Water Sci Technol 47(5):19–24

    PubMed  CAS  Google Scholar 

  • Tachikawa M, Tezuka M, Morita M, Isogai K, Okada S (2005) Evaluation of some halogen biocides using a microbial biofilm systems. Water Res 39 : 4126–4132

    PubMed  CAS  Google Scholar 

  • Tsai YP (2006) Interaction of chlorine concentration and shear stress on chlorine consumption, biofilm growth rate and particle number. Bioresource Technol 97:1912–1919

    CAS  Google Scholar 

  • US Environmental Protection Agency (US EPA) (1992) Control of biofilm growth in drinking water distribution systems. EPA/625/R-92/001. USEPA, Washington, DC

    Google Scholar 

  • Verran J, Hissett T (1999) The effect of substratum surface defects upon retention of and biofilm formation by micro-organisms from potable water. In: Keevil CW, Godfree A, Holt D, Dow C (eds.) Biofilms in the aquatic environment. Royal Society of Chemistry Cambridge, pp. 25–33

    Google Scholar 

  • Vieira MJ, Oliveira R, Melo LF, Pinheiro MM, van der Mei HC (1992) Biocolloids and biosur-faces. J Dispersion Sci Tech 13(4):437–445

    CAS  Google Scholar 

  • Viera MR, Guiamet PS, de Mele MFL, Videla HA (1999) Use of dissolved ozone for controlling planktonic and sessile bacteria in industrial cooling systems. Int Biodeter Biodeg 44:201–207

    CAS  Google Scholar 

  • Walker JT, Mackerness CW, Rogers J, Keevil CW (1995) Biofilm — a haven for waterborne pathogens. In: Lappin-Scott HM, Costerton JW (eds.) Microbial biofilms. Cambridge University Press, London, pp. 196–204

    Google Scholar 

  • Walker JT, Morales M (1997) Evaluation of chlorine dioxide (ClO2) for the control of biofilms. Water Sci Technol 35 (11–12):319–323

    CAS  Google Scholar 

  • Walker JT, Percival SL (2000) Control of biofouling in drinking water systems. In: Walker J, Surman S, Jass J (eds.) Industrial biofouling. Wiley, New York, pp. 55–76

    Google Scholar 

  • Watson HE (1908) A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. J Hygiene 8:536

    Google Scholar 

  • Williams MM, Braun Howland EB (2003) Growth of Escherichia coli in model distribution system biofilm exposed to hypochlorous acid or monochloramine. Appl Environ Microbiol 5463–5271

    Google Scholar 

  • Williams MM, Jorge W, Domingo S, Meckes MC (2005) Population diversity in model potable water biofilms receiving chlorine or chloramines residual. Biofouling 219 (5/6):279–288

    Google Scholar 

  • Wetegrove RL, Banks RH, Hermiller MR (1997) Optical monitor for improved fouling control in cooling systems. J Cooling Tower Inst 18:52–59

    Google Scholar 

  • White GC (1999) Handbook of chlorination and alternative disinfectants, 4th edn. Wiley, New York, p. 1568

    Google Scholar 

  • Wood P, Jones M, Bhakoo M, Gilbert P (1996) A novel strategy for control of microbial biofilms through generation of biocide at the biofilm surface interface. Appl Environ Microbiol 2598–2602

    Google Scholar 

  • Wingender J, Flemming HC (2004): Contamination potential of drinking water distribution network biofilms. Water Sci Technol 49: 277–285

    PubMed  CAS  Google Scholar 

  • Yohe TL, Donlan RM, Kyriss KK (1986) Sampling device for determining conditions on the interior surface of a water main. US patent no 4,631,961

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sriyutha Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murthy, P.S., Venkatesan, R. (2009). Industrial Biofilms and their Control. In: Flemming, HC., Murthy, P.S., Venkatesan, R., Cooksey, K. (eds) Marine and Industrial Biofouling. Springer Series on Biofilms, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69796-1_4

Download citation

Publish with us

Policies and ethics