Skip to main content

Hydroides elegans (Annelida: Polychaeta): A Model for Biofouling Research

  • Chapter
Marine and Industrial Biofouling

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 4))

The small serpulid polychaete Hydroides elegans is a problem fouling organism in warm water marine harbors around the world. Often the first significant animal biofouler on newly submerged surfaces, its calcareous tubes can accumu late rapidly and create serious problems for ships. H. elegans is easily adapted for laboratory biofouling research because of its rapid generation time (˜3 wks) and ease of propagation. The dioecious adult worms spawn readily in the laboratory, and their metamorphically competent larvae develop in ˜5 d at 25 °C. The larvae of H. elegans settle in response to natural biofilms or films formed by many, but not all, single marine bacterial species. Tubes of H. elegans adhere very tightly to surfaces and are more resistant to dislodgement than many barnacles. Thus, H. elegans is an excellent model organism for experimental studies, including tests of newly formulated marine coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baier RE (1984) Initial events in microbial film formation. In: Costlow JD, Tipper RC (eds.) Marine biodeterioration: an interdisciplinary study. US Naval Institute, Annapolis, MD, pp. 57–62

    Google Scholar 

  • Bailey-Brock JH (1987) Phylum Annelida. In: DM Devaney and LG Eldredge (eds.) Reef and shore fauna of Hawaii, Sections 2 and 3. Bishop Museum Press, Honolulu, pp. 213–454

    Google Scholar 

  • Bastida-Zavala JR, ten Hove HA (2002) Revisions of HydroidesGunnerus, 1768 (Polychaeta: Serpulidae) from the Western Atlantic region. Beaufortia52(9):103–178

    Google Scholar 

  • Bastida-Zavala JR, ten Hove HA (2003) Revisions of HydroidesGunnerus, 1768 (Polychaeta: Serpulidae) from the Eastern Pacific region and Hawaii. Beaufortia53(4):67–110

    Google Scholar 

  • Bidwell JP, Spotte P (1985) Artificial seawaters: formulas and methods. Bartlett, Boston, p. 349

    Google Scholar 

  • Brady Jr RF, Singer IL (2000) Mechanical factors favoring release from fouling release coatings. Biofouling15:73–81

    CAS  Google Scholar 

  • Bryan PJ, Qian PY, Kreider JL, Chia FC (1997) Induction of larval settlement and metamorphosis by pharmacological and conspecific associated compounds in the serpulid polychaete Hydroides elegans Mar Ecol Prog Ser146:81–90

    Article  CAS  Google Scholar 

  • Carlton JT, Hodder J (1995) Biogeography and dispersal of coastal marine organisms: experimen tal studies on a replica of a 16th century sailing vessel. Mar Biol121:721–730

    Article  Google Scholar 

  • Carpizo-Ituarte E, Hadfield MG (1998) Stimulation of metamorphosis in the polychaete Hydroides elegansHaswell (Serpulidae). Biol Bull194:14–24

    Article  Google Scholar 

  • Carpizo-Ituarte E, Hadfield MG (2003) Transcription and translation inhibitors permit metamor phosis up to radiole formation in the serpulid polychaete Hydroides elegans Biol Bull204:114–125

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh GM (1975) Formulae and methods of the Marine Biological Laboratory Chemical Room, 6th edn. Marine Biological Laboratory, Woods Hole, MA, 84 pp

    Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Edmondson CH (1944) Incidence of fouling in Pearl Harbor. Occas Pap Bernice P Bishop Mus18(1):1–34

    Google Scholar 

  • Godwin LS (2003) Hull fouling of maritime vessels as a pathway for marine species invasions to the Hawaiian Islands. Biofouling19(Suppl.):123–131

    Article  PubMed  Google Scholar 

  • Gollasch S (2002) The importance of ship hull fouling as a vector of species introductions into the North Sea. Biofouling18:105–121

    Article  Google Scholar 

  • Hadfield MG Paul VJ (2001) Natural chemical cues for settlement and metamorphosis of marine invertebrate larvae. In: McClintock JB, Baker W (eds.) Marine chemical ecology. CRC Press, Boca Raton, FL pp. 431–461

    Google Scholar 

  • Hadfield MG, Strathmann M (1996) Variability, flexibility and plasticity in life histories of marine invertebrates. Oceanologica Acta19(3–4):323–334

    Google Scholar 

  • Hadfield MG, Unabia CC, Smith CM, Michael TM (1994) Settlement preferences of the ubiqui tious fouler Hydroides elegans. In: Thompson MF, Nagabhushanam R, Sarojini R, Fingerman M (eds.) Recent developments in biofouling control. Oxford and IBH, New Delhi, pp. 65–74

    Google Scholar 

  • Harder T, Lam C, Qian PY (2002) Induction of larval settlement in the polychaete Hydroides elegansby marine biofilms: an investagation of monospecific diatom films as settlement cues. Mar Ecol Prog Ser229:105–112

    Article  Google Scholar 

  • Holm ER, Kavanagh CJ, Meyer AE, Wiebe D, Nedved BT, Wendt D, Smith CA, Hadfield MG, Swain G, Darkangelo Wood C, Truby K, Stein J, Montemarano J (2006) Interspecific variation in patterns of adhesion of marine fouling to silicone surfaces. Biofouling22(4):233–243

    Article  PubMed  CAS  Google Scholar 

  • Holm ER, Nedved BT, Carpizo-Ituarte E, Hadfield MG (1998) Metamorphic-signal transduction in Hydroides elegans(Polychaeta: Serpulidae) is not mediated by a G-Protein. Biol Bull195:21–29

    Article  CAS  Google Scholar 

  • Holm ER, Nedved BT, Phillips N, DeAngelis KL, Hadfield MG, Smith CM (2000) Temporal and spatial variation in the fouling of silicone coatings in Pearl Harbor, Hawaii. Biofouling15(1–3):95–107

    Article  Google Scholar 

  • Huang S, Hadfield MG (2003) Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans Mar Ecol Prog Ser260:161–172

    Article  CAS  Google Scholar 

  • Lau SCK, Mak KKW, Chen F, Qian PY (2002) Bioactivity of bacterial strains isolated from marine biofilms in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans Mar Ecol Prog Ser226:301–310

    Article  Google Scholar 

  • Lau SCK, Qian PY (2001) Larval settlement in the serpulid polychaete Hydroides elegansin response to bacterial films: an investigation of the nature of putative larval settlement cue. Mar Biol138(2):321–328

    Article  Google Scholar 

  • Lau SCK, Thiyagarajan V, Cheung CK, Qian PY (2005) Roles of bacterial community composi tion in biofilms as a mediator for larval settlement of three marine invertebrates. Aquat Microb Ecol38(1):41–51

    Article  Google Scholar 

  • Marshall KC (1981) Bacterial adhesion in natural environments. In: Berkeley RCW, Lynch JM Melling J, Rutter PR, Vincent B (eds.) Microbial adhesion to surfaces. Ellis-Horwood, New York, pp. 187–196

    Google Scholar 

  • McEdward LR, Qian PY (2001) Effects of the duration and timing of starvation during larval life on the metamorphosis and initial juvenile size of the polychaete Hydroides elegans (Haswell). J Exp Mar Bio Ecol261(2):185–197

    Article  PubMed  Google Scholar 

  • Miles CM, Hadfield MG, Wayne ML (2007) Estimates of heritability for egg size in the serpulid polychaete Hydroides elegans Mar Ecol Prog Ser340:155–162

    Article  Google Scholar 

  • Naldrett MJ, Kaplan DL (1997) Characterization of barnacle (Balanus eburneusand B.crenatus) adhesive proteins. Mar Biol127:629–635

    Article  CAS  Google Scholar 

  • Nedved BT, Hadfield MG (1998) Neurogenesis in the larvae of the serpulid polychaete Hydroides elegans Am Zool38:167A

    Google Scholar 

  • Nedved BT, Hadfield MG (2001) Fate of larval muscles during metamorphosis of Hydroides elegans Am Zool41:1536

    Google Scholar 

  • Paul MD (1937) Sexual maturity of some organisms in the Mardras Harbor. Curr Sci Bangalore5:478–479

    Google Scholar 

  • Schultz MP, Finlay JA, Callow ME, Callow JA (2003) Three models to relate detachment of low form fouling at laboratory and ship scale. Biofouling19(Suppl.):17–26

    Article  PubMed  Google Scholar 

  • Seaver EC, Kaneshige LM (2006) Expression of ‘tion”uring larval and juvenile development in the polychaetes Capitellasp. I and H. elegans Dev Biol289:179–194

    Article  PubMed  CAS  Google Scholar 

  • Seaver EC, Thamm K, Hill SD (2005) Growth patterns during segmentation in the two polychaete annelids, Capitellasp. I and Hydroides elegans: comparisons at distinct life history stages. Evol Dev7:312–326

    Article  PubMed  Google Scholar 

  • Shikuma NJ, Hadfield MG (2006) Temporal variation of an initial marine biofilm community and its effects on larval settlement and metamorphosis of the tubeworm Hydroides elegans Biofilms2(4):231–238

    Article  Google Scholar 

  • Smith AM, Callow JA (2006) Biological adhesives. Springer, Heidelberg Berlin New York, 284 pp

    Google Scholar 

  • Stein J, Truby K, Wood CD, Stein J, Gardner M, Swain G, Kavanagh C, Kovach B, Schultz M, Wiebe D, Holm E, Montemarano J, Wendt D, Smith C, Meyer A (2003) Silicone foul release coatings: effect of the interaction of oil and coating functionalities on the magnitude of mac rofouling attachment strengths. Biofouling19(Suppl.):71–82

    Article  PubMed  CAS  Google Scholar 

  • Strathmann MF (1987) Reproduction and development of marine invertebrates of the Northern Pacific Coast. University of Washington Press, Seattle, 670 pp

    Google Scholar 

  • Switzer-Dunlap M, Hadfield MG (1981) Laboratory culture of Aplysia. In: Hinegardner RE, Fay R (eds.) Marine invertebrates, laboratory animal management. National Academy of Sciences, Washington, DC, pp. 199–216

    Google Scholar 

  • ten Hove HA (1974) Notes on Hydroides elegans(Haaswell, 1883) and Mercierella enigmaticFauvel, 1923, alien serpulid polychaetes introduced to the Netherlands. Bull Zool Museum (University of Van Amsterdam)4(6):45–51

    Google Scholar 

  • Townsin RL (2003) The ship hull fouling penalty. Biofouling19(Suppl.):9–15

    Article  PubMed  Google Scholar 

  • Unabia CRC, Hadfield MG (1999) Role of bacteria in larval settlement and metamorphosis of the polychaete Hydroides elegans Mar Biol133:55–64

    Article  Google Scholar 

  • Walters LJ, Hadfield MG, del Carmen K (1997) The importance of larval choice and hydrody namics in creating aggregations of Hydroides elegans(Polychaeta: Serpulidae). Invert Biol116 (2) : 102 – 114

    Article  Google Scholar 

  • Walters LJ, Smith CM, Hadfield MG (2003) Recruitment of sessile marine invertebrates on Hawaiian macrophytes: do pre-settlement or post-settlement processes keep plants free from fouling? Bull Mar Sci72(3):813–839

    Google Scholar 

  • Wiegemann M (2005) Adhesion in blue mussels (Mytilus edulis) and barnacles (genus Balanus): mechanisms and technical applications. Aquat Sci67:166–176

    Article  CAS  Google Scholar 

  • Wisely B (1958) The development of a serpulid worm, Hydroides norvegica, Gunnerus (Polychaeta). Aust J Mar Freshwater Res9:351–361

    Article  Google Scholar 

  • Woods Hole Oceanographic Institution (1952) Marine fouling and its prevention. US Naval Institute, Annapolis, MD, 243 pp

    Google Scholar 

  • Zibrowius H (1971) Les espèces Méditerranéennes du genre Hydroides(Polychaeta Serpulidae): remarques sur le prétendu polymorphisme de Hydroides uncinata Tethys2:691–746

    Google Scholar 

  • Zobell CE, Allen EC (1935) The significance of marine bacteria in the fouling of submerged surfaces. J Bacteriol29:239–251

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian T. Nedved .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nedved, B.T., Hadfield, M.G. (2009). Hydroides elegans (Annelida: Polychaeta): A Model for Biofouling Research. In: Flemming, HC., Murthy, P.S., Venkatesan, R., Cooksey, K. (eds) Marine and Industrial Biofouling. Springer Series on Biofilms, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69796-1_11

Download citation

Publish with us

Policies and ethics